Given Xi and Yi co-ordinate of N distinct points in the 2-D Plane, the task is to count the number of squares that can be formed from these points that are parallel to both X and Y-axis.
Examples:
Input : X[] = { 0, 2, 0, 2 }, Y[] = { 0, 2, 2, 0 }
Output : 1
Explanation: Only one Square can be formed using these points –
(0, 2)(2, 2)
(0, 0)(2, 0)
Input : X[] = { 3, 2, 0, 6 }, Y[] = { 0, 2, 0, 6 }
Output : 0
Explanation: No Square can be formed using these points –
(3,0),(2,0), (0,0), (6,6)
Naive Approach: Iterate over all possible combinations of four points and check if a square can be formed that is parallel to both X and Y-axis. The time complexity of this approach would be O(N4).
Efficient Approach: We can observe that for any four points to make a required square, the following conditions must hold true –
- The points lying in the same horizontal line must have the same Y co-ordinates.
- The points lying in the same vertical line must have the same X co-ordinates.
- The distance between these points should be same.
Thus the four points of any square can be written as P1(X1, Y1), P2(X2, Y1), P3(X2, Y2) and P4(X1, Y2) in clockwise direction.
Consider any two points on the same horizontal or vertical line from the given ones. Calculate the distance between them. Based on that, form the other two points. Now check if both of the given points are present or not. If so, it ensures that a square is present. Hence, increase the count and proceed further.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function that returns the count of // squares parallel to both X and Y-axis // from a given set of points int countSquares( int * X, int * Y, int N) { // Initialize result int count = 0; // Initialize a set to store points set<pair< int , int > > points; // Initialize a map to store the // points in the same vertical line map< int , vector< int > > vertical; // Store the points in a set for ( int i = 0; i < N; i++) { points.insert({ X[i], Y[i] }); } // Store the points in the same vertical line // i.e. with same X co-ordinates for ( int i = 0; i < N; i++) { vertical[X[i]].push_back(Y[i]); } // Check for every two points // in the same vertical line for ( auto line : vertical) { int X1 = line.first; vector< int > yList = line.second; for ( int i = 0; i < yList.size(); i++) { int Y1 = yList[i]; for ( int j = i + 1; j < yList.size(); j++) { int Y2 = yList[j]; int side = abs (Y1 - Y2); int X2 = X1 + side; // Check if other two point are present or not if (points.find({ X2, Y1 }) != points.end() and points.find({ X2, Y2 }) != points.end()) count++; } } } return count; } // Driver Code int main() { int X[] = { 0, 2, 0, 2 }, Y[] = { 0, 2, 2, 0 }; int N = sizeof (X) / sizeof (X[0]); cout << countSquares(X, Y, N); return 0; } |
Java
// Java implementation of the approach import java.util.*; public class GFG { // Function that returns the count of // squares parallel to both X and Y-axis // from a given set of points static int countSquares( int [] X, int [] Y, int N) { // Initialize result int count = 0 ; // Initialize a set to store points HashSet<String> points = new HashSet<String>(); // Initialize a map to store the // points in the same vertical line HashMap<Integer, ArrayList<Integer> > vertical = new HashMap<Integer, ArrayList<Integer>>(); // Store the points in a set for ( int i = 0 ; i < N; i++) { points.add( String.valueOf(X[i]) + "#" + String.valueOf(Y[i])); } // Store the points in the same vertical line // i.e. with same X co-ordinates for ( int i = 0 ; i < N; i++) { if (!vertical.containsKey(X[i])) vertical.put(X[i], new ArrayList<Integer>()); ArrayList<Integer> l1 = vertical.get(X[i]); l1.add(Y[i]); vertical.put(X[i], l1); } // Check for every two points // in the same vertical line for (var line : vertical.entrySet()) { int X1 = line.getKey(); ArrayList<Integer> yList = line.getValue(); for ( int i = 0 ; i < yList.size(); i++) { int Y1 = yList.get(i); for ( int j = i + 1 ; j < yList.size(); j++) { int Y2 = yList.get(j); int side = Math.abs(Y1 - Y2); int X2 = X1 + side; // Check if other two point are present or not if (points.contains( String.valueOf(X2) + "#" + String.valueOf(Y1)) && points.contains( String.valueOf(X2) + "#" + String.valueOf(Y2))) count++; } } } return count; } // Driver Code public static void main(String[] args) { int [] X = { 0 , 2 , 0 , 2 }; int [] Y = { 0 , 2 , 2 , 0 }; int N = X.length; System.out.println(countSquares(X, Y, N)); } } // This code is contributed by phasing17 |
Python3
# Python3 implementation of the approach # Function that returns the count of # squares parallel to both X and Y-axis # from a given set of points def countSquares(X, Y, N) : # Initialize result count = 0 ; # Initialize a set to store points points = []; # Initialize a map to store the # points in the same vertical line vertical = dict .fromkeys(X, None ); # Store the points in a set for i in range (N) : points.append((X[i], Y[i])); # Store the points in the same vertical line # i.e. with same X co-ordinates for i in range (N) : if vertical[X[i]] is None : vertical[X[i]] = [Y[i]]; else : vertical[X[i]].append(Y[i]); # Check for every two points # in the same vertical line for line in vertical : X1 = line; yList = vertical[line]; for i in range ( len (yList)) : Y1 = yList[i]; for j in range (i + 1 , len (yList)) : Y2 = yList[j]; side = abs (Y1 - Y2); X2 = X1 + side; # Check if other two point are present or not if ( X2, Y1 ) in points and ( X2, Y2 ) in points : count + = 1 ; return count; # Driver Code if __name__ = = "__main__" : X = [ 0 , 2 , 0 , 2 ]; Y = [ 0 , 2 , 2 , 0 ]; N = len (X); print (countSquares(X, Y, N)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function that returns the count of // squares parallel to both X and Y-axis // from a given set of points static int countSquares( int [] X, int [] Y, int N) { // Initialize result int count = 0; // Initialize a set to store points HashSet< string > points = new HashSet< string >(); // Initialize a map to store the // points in the same vertical line Dictionary< int , List< int > > vertical = new Dictionary< int , List< int >>(); // Store the points in a set for ( int i = 0; i < N; i++) { points.Add( Convert.ToString(X[i]) + "#" + Convert.ToString(Y[i])); } // Store the points in the same vertical line // i.e. with same X co-ordinates for ( int i = 0; i < N; i++) { if (!vertical.ContainsKey(X[i])) vertical[X[i]] = new List< int >(); vertical[X[i]].Add(Y[i]); } // Check for every two points // in the same vertical line foreach ( var line in vertical) { int X1 = line.Key; List< int > yList = line.Value; for ( int i = 0; i < yList.Count; i++) { int Y1 = yList[i]; for ( int j = i + 1; j < yList.Count; j++) { int Y2 = yList[j]; int side = Math.Abs(Y1 - Y2); int X2 = X1 + side; // Check if other two point are present or not if (points.Contains( Convert.ToString(X2) + "#" + Convert.ToString(Y1)) && points.Contains( Convert.ToString(X2) + "#" + Convert.ToString(Y2))) count++; } } } return count; } // Driver Code public static void Main( string [] args) { int [] X = { 0, 2, 0, 2 }; int [] Y = { 0, 2, 2, 0 }; int N = X.Length; Console.WriteLine(countSquares(X, Y, N)); } } |
Javascript
// JS implementation of the approach // Function that returns the count of // squares parallel to both X and Y-axis // from a given set of points function countSquares(X, Y, N) { // Initialize result let count = 0; // Initialize a set to store points let points = new Set(); // Initialize a map to store the // points in the same vertical line let vertical = {}; // Store the points in a set for ( var i = 0; i < N; i++) { points.add(X[i] + "#" + Y[i]); } // Store the points in the same vertical line // i.e. with same X co-ordinates for ( var i = 0; i < N; i++) { if (!vertical.hasOwnProperty(X[i])) vertical[X[i]] = []; vertical[X[i]].push(Y[i]); } // Check for every two points // in the same vertical line for ( var [X1, yList] of Object.entries(vertical)) { X1 = parseInt(X1) for ( var i = 0; i < yList.length; i++) { let Y1 = yList[i]; for (let j = i + 1; j < yList.length; j++) { let Y2 = yList[j]; let side = Math.abs(Y1 - Y2); let X2 = X1 + side; let p1 = X2 + "#" + Y1 let p2 = X2 + "#" + Y2 // Check if other two point are present or not if (points.has(p1) && points.has(p2)) count++; } } } return count; } // Driver Code let X = [ 0, 2, 0, 2 ] let Y = [ 0, 2, 2, 0 ]; let N = X.length; console.log(countSquares(X, Y, N)); // This code is contributed by phasing17 |
1
Time Complexity: O(N2).
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!