Sunday, January 5, 2025
Google search engine
HomeData Modelling & AICheck if every row in given Matrix contains all the integers from...

Check if every row in given Matrix contains all the integers from 1 to N

Given a matrix arr[][] of size M*N containing only positive integers, the task is to check if every row contains all the integers from 1 to N

Examples: 

Input: arr[][] = {{1, 4, 2, 3}, {2, 3, 4, 1}, {3, 4, 2, 1}}
Output: Yes
Explanation: Every row contains all the numbers from 1 to 4

Input: arr[][] = {{1, 2}, {2, 3}}
Output: No

 

Naive Approach: The simplest approach is to sort each row of the matrix and then check each row if it contains all elements from 1 to N or not.

Time Complexity: O(M * N * logN)
Auxiliary Space: O(M * N)

Efficient approach: This problem can be solved using the approach of Find the smallest positive number missing from an unsorted array. The idea is to use the given matrix to use as a structure to mark the numbers that we found. So, if a number between 1 to N is found, mark the index corresponding to that number by inverting the element present at that index. 

For example if 2 is found on row 1, change arr[1][2] to arr[1][2] = -arr[1][2]

After applying this operation on all elements in the matrix, the matrix should contain all negatives otherwise all rows do not contain numbers from 1 to N.

Below is the implementation of the above approach:

C++




// C++ code for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if every row contains
// all the integers from 1 to N
bool checkMat(vector<vector<int> >& arr)
{
  
    int N = arr.size();
    int M = arr[0].size();
  
    for (auto& x : arr) {
        for (auto& y : x) {
            if (abs(y) >= 1 and abs(y) <= M) {
                x[abs(y) - 1] = -x[abs(y) - 1];
            }
        }
    }
  
    // Check if the matrix contains
    // all negatives or not
    for (auto x : arr) {
        for (auto y : x) {
            if (y > 0) {
                return 0;
            }
        }
    }
  
    return true;
}
  
// Driver Code
int main()
{
    vector<vector<int> > arr = { { 1, 4, 2, 3 },
                                 { 2, 3, 4, 1 },
                                 { 3, 4, 2, 1 } };
    if (checkMat(arr)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
  
class GFG {
  
  // Function to check if every row contains
  // all the integers from 1 to N
  static Boolean checkMat(int[][] arr)
  {
  
    int N = arr.length;
    int M = arr[0].length;
  
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < M; j++) {
        if (Math.abs(arr[i][j]) >= 1 && Math.abs(arr[i][j]) <= M) {
          arr[i][(Math.abs(arr[i][j]) - 1)] = -arr[i][(Math.abs(arr[i][j]) - 1)];
        }
      }
    }
  
    // Check if the matrix contains
    // all negatives or not
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < M; j++) {
        if (arr[i][j] > 0) {
          return false;
        }
      }
    }
  
    return true;
  }
  
  // Driver Code
  
  public static void main (String[] args) {
    int[][] arr = { { 1, 4, 2, 3 },
                   { 2, 3, 4, 1 },
                   { 3, 4, 2, 1 } };
    if (checkMat(arr)) {
      System.out.print("Yes");
    }
    else {
      System.out.print("No");
    }
  }
}
  
// This code is contributed by hrithikgarg03188.


Python3




# Python code for the above approach
  
# Function to check if every row contains
# all the integers from 1 to N
def checkMat(arr):
  
    N = len(arr)
    M = len(arr[0])
  
    for x in arr:
        for y in x:
            if (abs(y) >= 1 and abs(y) <= M):
                x[abs(y) - 1] = -x[abs(y) - 1]
  
    # Check if the matrix contains
    # all negatives or not
    for x in arr:
        for y in x:
            if (y > 0):
                return 0
  
    return True
  
# Driver Code
arr = [[1, 4, 2, 3],
       [2, 3, 4, 1],
       [3, 4, 2, 1]]
if (checkMat(arr)):
    print("Yes")
  
else:
    print("No")
  
# This code is contributed by Saurabh Jaiswal


C#




// C# code to implement the above approach
using System;
class GFG {
  
  // Function to check if every row contains
  // all the integers from 1 to N
  static Boolean checkMat(int[,] arr)
  {
  
    int N = arr.GetLength(0);
    int M = arr.GetLength(1);
  
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < M; j++) {
        if (Math.Abs(arr[i, j]) >= 1 && Math.Abs(arr[i, j]) <= M) {
          arr[i, Math.Abs(arr[i, j]) - 1] = -arr[i, Math.Abs(arr[i, j]) - 1];
        }
      }
    }
  
    // Check if the matrix contains
    // all negatives or not
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < M; j++) {
        if (arr[i, j] > 0) {
          return false;
        }
      }
    }
  
    return true;
  }
  
  // Driver Code
  public static void Main () {
    int[,] arr = { { 1, 4, 2, 3 },
                  { 2, 3, 4, 1 },
                  { 3, 4, 2, 1 } };
    if (checkMat(arr)) {
      Console.Write("Yes");
    }
    else {
      Console.Write("No");
    }
  }
}
  
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
     // JavaScript code for the above approach 
 
     // Function to check if every row contains
     // all the integers from 1 to N
     function checkMat(arr)
     {
 
         let N = arr.length;
         let M = arr[0].length;
 
         for (let x of arr) {
             for (let y of x) {
                 if (Math.abs(y) >= 1 && Math.abs(y) <= M) {
                     x[(Math.abs(y) - 1)] = -x[(Math.abs(y) - 1)];
                 }
             }
         }
 
         // Check if the matrix contains
         // all negatives or not
         for (let x of arr) {
             for (let y of x) {
                 if (y > 0) {
                     return 0;
                 }
             }
         }
 
         return true;
     }
 
     // Driver Code
     let arr = [[1, 4, 2, 3],
     [2, 3, 4, 1],
     [3, 4, 2, 1]];
     if (checkMat(arr)) {
         document.write("Yes");
     }
     else {
         document.write("No");
     }
 
    // This code is contributed by Potta Lokesh
 </script>


 
 

Output

Yes

 

Time Complexity: O(M * N)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments