Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AICounting Inversions using Ordered Set and GNU C++ PBDS

Counting Inversions using Ordered Set and GNU C++ PBDS

Given an array arr[] of N integers. The task is to find the number of inversion. Two elements arr[i] and arr[j] form an inversion if arr[i] > arr[j] and i < j

Examples 

Input: arr[] = {8, 4, 2, 1} 
Output:
Explanation: 
Given array has six inversions:  

  • (8, 4): arr[0] > arr[1] and 0 < 1
  • (8, 2): arr[0] > arr[2] and 0 < 2
  • (8, 1): arr[0] > arr[3] and 0 < 3
  • (4, 2): arr[1] > arr[2] and 1 < 2
  • (4, 1): arr[1] > arr[3] and 1 < 3
  • (2, 1): arr[2] > arr[3] and 2 < 3

Input: arr[] = {2, 3} 
Output:
Explanation: 
There is no such pair exists such that arr[i] > arr[j] and i < j.
 

We have already discussed below approaches:  

In this post, we will be discussing an approach using Ordered Set and GNU C++ PBDS.

Approach: 
We will be using the function order_of_key(K) which returns number of elements strictly smaller than K in log N time.  

  1. Insert the first element of the array in the Ordered_Set.
  2. For all the remaining element in arr[] do the following: 
    • Insert the current element in the Ordered_Set.
    • Find the number of element strictly less than current element + 1 in Ordered_Set using function order_of_key(arr[i]+1).
    • The difference between size of Ordered_Set and order_of_key(current_element + 1) will give the inversion count for the current element.

For Example:

arr[] = {8, 4, 2, 1}
Ordered_Set S = {8}
For remaining element in arr[]:
At index 1, the element is  4
S = {4, 8}
key = order_of_key(5) = 1
The difference between size of S and key gives the total 
number of inversion count for that current element.
inversion_count = S.size() - key =  2 - 1 = 1
Inversion Pairs are: (8, 4)

At index 2, the element is  2
S = {2, 4, 8}
key = order_of_key(3) = 1
inversion_count = S.size() - key =  3 - 1 = 2
Inversion Pairs are: (8, 2) and (4, 2)

At index 3, the element is 1
S = {1, 2, 4, 8}
key = order_of_key(2) = 1
inversion_count = S.size() - key =  4 - 1 = 3
Inversion Pairs are: (8, 1), (4, 1) and (2, 1)

Total inversion count = 1 + 2 + 3 = 6

Below is the implementation of the above approach: 

C++




// Ordered set in GNU C++ based
// approach for inversion count
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
 
// Ordered Set Tree
typedef tree<int, null_type, less_equal<int>,
             rb_tree_tag,
             tree_order_statistics_node_update>
    ordered_set;
 
// Returns inversion count in
// arr[0..n-1]
int getInvCount(int arr[], int n)
{
    int key;
    // Initialise the ordered_set
    ordered_set set1;
 
    // Insert the first
    // element in set
    set1.insert(arr[0]);
 
    // Initialise inversion
    // count to zero
    int invcount = 0;
 
    // Finding the inversion
    // count for current element
    for (int i = 1; i < n; i++) {
        set1.insert(arr[i]);
 
        // Number of elements strictly
        // less than arr[i]+1
        key = set1.order_of_key(arr[i] + 1);
 
        // Difference between set size
        // and key will give the
        // inversion count
        invcount += set1.size() - key;
    }
    return invcount;
}
 
// Driver's Code
int main()
{
    int arr[] = { 8, 4, 2, 1 };
    int n = sizeof(arr) / sizeof(int);
 
    // Function call to count
    // inversion
    cout << getInvCount(arr, n);
    return 0;
}


Output: 

6

 

Time Complexity: O(Nlog N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments