Monday, November 18, 2024
Google search engine
HomeData Modelling & AIPrint all lexicographical greater permutations of a given string

Print all lexicographical greater permutations of a given string

Given a string S, print those permutations of string S which are lexicographically greater than S. If there is no such permutation of string, print -1. 
Examples:

Input : BCA 
Output : CAB, CBA 
Explanation: Here, S = “BCA”, and there are 2 strings “CAB, CBA” which are lexicographically greater than S. 

Input : CBA 
Output : -1 There is no string which is lexicographically greater than S, so the output is -1.

Approach: To solve the problem mentioned above we will use STL. Use next_permuation() and prev_permutation() functions to check and the lexicographically greater strings. If the string is greater then print it otherwise print -1. Below is the implementation of above approach: 

CPP




// C++ program to print the lexicographically
// greater strings then the given string
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the lexicographically
// greater strings then the given string
void print_lexiStrings(string S)
{
 
    // Condition to check if there is no
    // string which is lexicographically
    // greater than string S
    if (!next_permutation(S.begin(), S.end()))
        cout<<-1<<endl;
 
    // Move to the previous permutation
    prev_permutation(S.begin(), S.end());
 
    // Iterate over all the
    // lexicographically greater strings
    while (next_permutation(S.begin(), S.end())) {
        cout<<S<<endl;
    }
}
 
// Driver Code
int main()
{
 
    string S = "ABC";
 
    print_lexiStrings(S);
}


Java




import java.util.*;
 
public class Main {
  // Function to print the lexicographically
  // greater strings then the given string
  public static void printLexiStrings(String S) {
      // Convert the string to a character array
      char[] charArray = S.toCharArray();
      // Condition to check if there is no
      // string which is lexicographically
      // greater than string S
      boolean hasNext = true;
      for (int i = charArray.length - 2; i >= 0; i--) {
          if (charArray[i] < charArray[i + 1]) {
              int j = charArray.length - 1;
              while (charArray[j] <= charArray[i]) {
                  j--;
              }
              swap(charArray, i, j);
              reverse(charArray, i + 1, charArray.length - 1);
              hasNext = false;
              break;
          }
      }
      if (hasNext) {
          System.out.println(-1);
      }
 
      // Iterate over all the
      // lexicographically greater strings
      while (!hasNext) {
          System.out.println(new String(charArray));
          hasNext = true;
          for (int i = charArray.length - 2; i >= 0; i--) {
              if (charArray[i] < charArray[i + 1]) {
                  int j = charArray.length - 1;
                  while (charArray[j] <= charArray[i]) {
                      j--;
                  }
                  swap(charArray, i, j);
                  reverse(charArray, i + 1, charArray.length - 1);
                  hasNext = false;
                  break;
              }
          }
      }
  }
 
  // Utility function to swap two characters in an array
  private static void swap(char[] charArray, int i, int j) {
      char temp = charArray[i];
      charArray[i] = charArray[j];
      charArray[j] = temp;
  }
 
  // Utility function to reverse the subarray from index i to j
  private static void reverse(char[] charArray, int i, int j) {
      while (i < j) {
          swap(charArray, i, j);
          i++;
          j--;
      }
  }
 
  // Driver Code
  public static void main(String[] args) {
      String S = "ABC";
 
      printLexiStrings(S);
  }
}


Python3




import itertools
 
# Define a function that finds lexicographically greater permutations of the given string
def print_lexiStrings(S):
    # Convert the string into a list of characters
    S_list = list(S)
    # Use the itertools.permutations function to generate all permutations of the list of characters
    # and keep only the ones that are lexicographically greater than the original string
    lex_greater_permutations = [''.join(perm) for perm in itertools.permutations(S_list) if perm > tuple(S_list)]
    # If there are any permutations that are lexicographically greater than the original string, print them
    if lex_greater_permutations:
        for perm in lex_greater_permutations:
            print(perm)
    # If there are no permutations that are lexicographically greater than the original string, print -1
    else:
        print(-1)
 
# Driver Code
if __name__ == "__main__":
    # Test the function with an example string
    S = "ABC"
    print_lexiStrings(S)


C#




using System;
using System.Linq;
 
class Program
{
  static void print_lexiStrings(string S)
  {
    // Convert the string to a character array
    char[] arr = S.ToCharArray();
 
    // Condition to check if there is no
    // string which is lexicographically
    // greater than string S
    if (!next_permutation(arr))
      Console.WriteLine("-1");
 
    // Move to the previous permutation
    prev_permutation(arr);
 
    // Iterate over all the
    // lexicographically greater strings
    while (next_permutation(arr))
    {
      Console.WriteLine(new string(arr));
    }
  }
 
  static bool next_permutation(char[] arr)
  {
    int i = arr.Length - 2;
    while (i >= 0 && arr[i] >= arr[i + 1])
    {
      i--;
    }
 
    if (i < 0)
    {
      return false;
    }
 
    int j = arr.Length - 1;
    while (j > i && arr[j] <= arr[i])
    {
      j--;
    }
 
    swap(arr, i, j);
    reverse(arr, i + 1, arr.Length - 1);
    return true;
  }
 
  static void prev_permutation(char[] arr)
  {
    int i = arr.Length - 2;
    while (i >= 0 && arr[i] <= arr[i + 1])
    {
      i--;
    }
 
    if (i < 0)
    {
      return;
    }
 
    int j = arr.Length - 1;
    while (j > i && arr[j] >= arr[i])
    {
      j--;
    }
 
    swap(arr, i, j);
    reverse(arr, i + 1, arr.Length - 1);
  }
 
  static void swap(char[] arr, int i, int j)
  {
    char temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
  }
 
  static void reverse(char[] arr, int i, int j)
  {
    while (i < j)
    {
      swap(arr, i, j);
      i++;
      j--;
    }
  }
 
  static void Main(string[] args)
  {
    string S = "ABC";
 
    print_lexiStrings(S);
  }
}


Javascript




function printLexiStrings(S) {
  // Convert the string to a character array
  let charArray = S.split('');
  // Condition to check if there is no
  // string which is lexicographically
  // greater than string S
  let hasNext = true;
  for (let i = charArray.length - 2; i >= 0; i--) {
    if (charArray[i] < charArray[i + 1]) {
      let j = charArray.length - 1;
      while (charArray[j] <= charArray[i]) {
        j--;
      }
      swap(charArray, i, j);
      reverse(charArray, i + 1, charArray.length - 1);
      hasNext = false;
      break;
    }
  }
  if (hasNext) {
    console.log(-1);
  }
 
  // Iterate over all the
  // lexicographically greater strings
  while (!hasNext) {
    console.log(charArray.join(''));
    hasNext = true;
    for (let i = charArray.length - 2; i >= 0; i--) {
      if (charArray[i] < charArray[i + 1]) {
        let j = charArray.length - 1;
        while (charArray[j] <= charArray[i]) {
          j--;
        }
        swap(charArray, i, j);
        reverse(charArray, i + 1, charArray.length - 1);
        hasNext = false;
        break;
      }
    }
  }
}
 
// Utility function to swap two characters in an array
function swap(charArray, i, j) {
  let temp = charArray[i];
  charArray[i] = charArray[j];
  charArray[j] = temp;
}
 
// Utility function to reverse the subarray from index i to j
function reverse(charArray, i, j) {
  while (i < j) {
    swap(charArray, i, j);
    i++;
    j--;
  }
}
 
// Driver Code
let S = "ABC";
 
printLexiStrings(S);


Output

ACB
BAC
BCA
CAB
CBA





Time Complexity : O(N*N!), As next_permutation takes O(N!) for finding all the permutations and in order to print the string it will take O(N) time complexity, where N is the length of the string.
Auxiliary Space : O(1)

New Approach:- Here, another approach to solve This program prints all the lexicographically greater permutations of a given string using the following algorithm:

1. Initialize a flag variable “found” to false.
2. Start a do-while loop that runs until a greater permutation is not found.
3. Find the largest index k such that S[k] < S[k+1] by iterating over the string from left to right.
4. If no such index exists, break out of the loop because the given permutation is already the largest possible.
5. Find the largest index l such that S[k] < S[l] by iterating over the string from k+1 to the end.
6. Swap S[k] and S[l].
7. Reverse the sequence from S[k+1] up to the end of the string.
8. Print the lexicographically greater string.
9. Set the flag to true.
10. Repeat the above steps until there are no more greater permutations left.
11. If no greater permutation was found, print -1.

In this way, the program prints all the lexicographically greater permutations of the given string.

Below is the implementation of above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to print all the lexicographically greater strings
void print_lexiStrings(string S)
{
    int n = S.size();
 
    // Flag variable to keep track of whether a greater permutation was found
    bool found = false;
 
    do {
        // Find the largest index k such that S[k] < S[k+1]
        int k = -1;
        for (int i = 0; i < n - 1; i++) {
            if (S[i] < S[i+1])
                k = i;
        }
 
        // If no such index exists, the permutation is already the largest possible
        if (k == -1)
            break;
 
        // Find the largest index l such that S[k] < S[l]
        int l = -1;
        for (int i = k+1; i < n; i++) {
            if (S[k] < S[i])
                l = i;
        }
 
        // Swap S[k] and S[l]
        swap(S[k], S[l]);
 
        // Reverse the sequence from S[k+1] up to the end of the string
        reverse(S.begin() + k + 1, S.end());
 
        // Print the lexicographically greater string
        cout << S << "\n";
 
        // Set the flag to true
        found = true;
 
    } while (found);
 
    // If no greater permutation was found, print -1
    if (!found)
        cout << "-1\n";
}
 
// Driver Code
int main()
{
    string S = "ABC";
 
    print_lexiStrings(S);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
    // Function to print all the lexicographically greater
    // strings
    static void printLexiStrings(String s)
    {
        char[] S = s.toCharArray();
        int n = S.length;
 
        // Flag variable to keep track of whether a greater
        // permutation was found
        boolean found = false;
 
        do {
            // Find the largest index k such that S[k] <
            // S[k+1]
            int k = -1;
            for (int i = 0; i < n - 1; i++) {
                if (S[i] < S[i + 1])
                    k = i;
            }
 
            // If no such index exists, the permutation is
            // already the largest possible
            if (k == -1)
                break;
 
            // Find the largest index l such that S[k] <
            // S[l]
            int l = -1;
            for (int i = k + 1; i < n; i++) {
                if (S[k] < S[i])
                    l = i;
            }
 
            // Swap S[k] and S[l]
            char temp = S[k];
            S[k] = S[l];
            S[l] = temp;
 
            // Reverse the sequence from S[k+1] up to the
            // end of the array
            for (int i = k + 1, j = n - 1; i < j;
                 i++, j--) {
                temp = S[i];
                S[i] = S[j];
                S[j] = temp;
            }
 
            // Print the lexicographically greater string
            System.out.println(String.valueOf(S));
 
            // Set the flag to true
            found = true;
 
        } while (found);
 
        // If no greater permutation was found, print -1
        if (!found)
            System.out.println("-1");
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String S = "ABC";
 
        printLexiStrings(S);
    }
}


Python3




# Pytho program for above approach
def print_lexi_strings(S):
    n = len(S)
    found = False
     
    while True:
        # Find the largest index k such that S[k] < S[k+1]
        k = -1
        for i in range(n - 1):
            if S[i] < S[i + 1]:
                k = i
         
        # If no such index exists, break the loop
        if k == -1:
            break
         
        # Find the largest index l such that S[k] < S[l]
        l = -1
        for i in range(k + 1, n):
            if S[k] < S[i]:
                l = i
         
        # Swap S[k] and S[l]
        S_list = list(S)
        S_list[k], S_list[l] = S_list[l], S_list[k]
        S = ''.join(S_list)
         
        # Reverse the sequence from S[k+1] up to the end of the string
        S = S[:k + 1] + S[k + 1:][::-1]
         
        # Print the lexicographically greater string
        print(S)
         
        # Set the flag to True
        found = True
     
    # If no greater permutation was found, print -1
    if not found:
        print("-1")
 
# Driver Code
if __name__ == "__main__":
    S = "ABC"
    print_lexi_strings(S)


C#




using System;
 
class Program
{
    // Function to print all the lexicographically greater strings
    static void PrintLexiStrings(string s)
    {
        int n = s.Length;
 
        // Flag variable to keep track of whether a greater permutation was found
        bool found = false;
 
        do
        {
            // Find the largest index k such that S[k] < S[k+1]
            int k = -1;
            for (int i = 0; i < n - 1; i++)
            {
                if (s[i] < s[i + 1])
                    k = i;
            }
 
            // If no such index exists, the permutation is already the largest possible
            if (k == -1)
                break;
 
            // Find the largest index l such that S[k] < S[l]
            int l = -1;
            for (int i = k + 1; i < n; i++)
            {
                if (s[k] < s[i])
                    l = i;
            }
 
            // Convert the string to a char array for swapping
            char[] chars = s.ToCharArray();
 
            // Swap S[k] and S[l]
            char temp = chars[k];
            chars[k] = chars[l];
            chars[l] = temp;
 
            s = new string(chars);
 
            // Reverse the sequence from S[k+1] up to the end of the string
            char[] subArray = s.Substring(k + 1).ToCharArray();
            Array.Reverse(subArray);
            s = s.Substring(0, k + 1) + new string(subArray);
 
            // Print the lexicographically greater string
            Console.WriteLine(s);
 
            // Set the flag to true
            found = true;
        }
        while (found);
 
        // If no greater permutation was found, print -1
        if (!found)
            Console.WriteLine("-1");
    }
 
    // Driver Code
    static void Main()
    {
        string S = "ABC";
 
        PrintLexiStrings(S);
    }
}
 
// This code is contributed by Dwaipayan Bandyopadhyay


Output:-

ACB
BAC
BCA
CAB
CBA

Time complexity:- Time complexity of the given implementation is O(n!), where n is the length of the string. This is because there are n! possible permutations of the string, and we are checking all of them.

Auxiliary Space:- The auxiliary space used by the program is O(n), where n is the length of the string. This is because we are only storing the input string and a few integer variables. Therefore, the space complexity is constant with respect to the input size.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments