Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMaximum value after merging all elements in the array

Maximum value after merging all elements in the array

Given an array a of size N. The task is to merge all elements in the array and find the maximum possible value. One can merge two elements in the array as explained below.
 

If i and j are two indexes of the array(i ≠ j). Merging jth element into ith element makes a[i] as a[i] – a[j] and remove a[j] from the array.

Examples:
 

Input : a[] = {2 1 2 1} (n == 4) 
Output :
Merge 3rd element into 2nd element then the array becomes {2, -1, 1} 
Merge 3rd element into 2nd element then the array becomes {2, -2} 
Merge 2nd element into 1st element then the array becomes {4}
Input: a[] = {1, 3, 5, -2, -6} 
Output: 17 
Merge 4th element into 3rd element then the array becomes {1, 3, -7, -6} 
Merge 2nd element into 3rd element then the array becomes {1, -10, -6} 
Merge 2nd element into 1st element then the array becomes {11, -6} 
Merge 2nd element into 1st element then the array becomes {17} 
 

Approach: 
 

  • If the array contains both positive and negative elements, then add absolute value all elements of the array
  • If the array contains the only positive elements. Then subtract the least element from the summation of all other elements
  • If the array contains the only negative elements. First, replace all elements with their absolute values. Then subtract the least element from the summation of all other elements

Below is the implementation of the above approach: 
 

C++




// CPP program to maximum value after
// merging all elements in the array
#include <bits/stdc++.h>
using namespace std;
 
// Function to maximum value after
// merging all elements in the array
int Max_sum(int a[], int n)
{
    // To check if positive and negative
    // elements present or not
    int pos = 0, neg = 0;
     
    for(int i = 0; i < n; i++)
    {
        // Check for positive integer
        if(a[i] > 0)
            pos = 1;
             
        // Check for negative integer
        else if(a[i] < 0)
            neg = 1;
             
        // If both positive and negative
        // elements are present
        if(pos == 1 and neg == 1)
            break;
    }
     
    // To store maximum value possible
    int sum = 0;
     
    if(pos==1 and neg==1)
    {
        for(int i=0; i < n ; i++)
            sum += abs(a[i]);
    }
     
    else if(pos == 1)
    {
        // To find minimum value
        int mini = a[0];
        sum = a[0];
        for(int i=1; i < n; i++)
        {
            mini = min(mini, a[i]);
            sum += a[i];
        }   
         
        // Remove minimum element
        sum -= 2*mini;
    }   
     
    else if(neg == 1)
    {
        // Replace with absolute values
        for(int i = 0; i < n; i++)
            a[i] = abs(a[i]);
             
        // To find minimum value
        int mini = a[0];
        sum = a[0];
        for(int i=1; i < n; i++)
        {
            mini = min(mini, a[i]);
            sum += a[i];
        }   
         
        // Remove minimum element
        sum -= 2*mini;
         
    }
     
    // Return the required sum
    return sum;
}
 
// Driver code
int main()
{
    int a[] = {1, 3, 5, -2, -6};
     
    int n = sizeof(a) / sizeof(a[0]);
     
    // Function call
    cout << Max_sum(a, n);
     
    return 0;
}


Java




// Java program to maximum value after
// merging all elements in the array
import java.io.*;
 
class GFG
{
     
// Function to maximum value after
// merging all elements in the array
static int Max_sum(int a[], int n)
{
    // To check if positive and negative
    // elements present or not
    int pos = 0, neg = 0;
     
    for(int i = 0; i < n; i++)
    {
        // Check for positive integer
        if(a[i] > 0)
            pos = 1;
             
        // Check for negative integer
        else if(a[i] < 0)
            neg = 1;
             
        // If both positive and negative
        // elements are present
        if((pos == 1) && (neg == 1))
            break;
    }
     
    // To store maximum value possible
    int sum = 0;
     
    if((pos == 1) && (neg == 1))
    {
        for(int i = 0; i < n ; i++)
            sum += Math.abs(a[i]);
    }
     
    else if(pos == 1)
    {
        // To find minimum value
        int mini = a[0];
        sum = a[0];
        for(int i = 1; i < n; i++)
        {
            mini = Math.min(mini, a[i]);
            sum += a[i];
        }
         
        // Remove minimum element
        sum -= 2*mini;
    }
     
    else if(neg == 1)
    {
        // Replace with absolute values
        for(int i = 0; i < n; i++)
            a[i] = Math.abs(a[i]);
             
        // To find minimum value
        int mini = a[0];
        sum = a[0];
        for(int i = 1; i < n; i++)
        {
            mini = Math.min(mini, a[i]);
            sum += a[i];
        }
         
        // Remove minimum element
        sum -= 2*mini;
         
    }
     
    // Return the required sum
    return sum;
}
 
// Driver code
public static void main (String[] args)
{
 
    int []a = {1, 3, 5, -2, -6};
    int n = a.length;
    // Function call
    System.out.println (Max_sum(a, n));
}
}
 
// This code is contributed by ajit.


Python3




# Python 3 program to maximum value after
# merging all elements in the array
 
# Function to maximum value after
# merging all elements in the array
def Max_sum(a, n):
    # To check if positive and negative
    # elements present or not
    pos = 0
    neg = 0
     
    for i in range(n):
        # Check for positive integer
        if(a[i] > 0):
            pos = 1
             
        # Check for negative integer
        elif(a[i] < 0):
            neg = 1
             
        # If both positive and negative
        # elements are present
        if(pos == 1 and neg == 1):
            break
     
    # To store maximum value possible
    sum = 0
     
    if(pos==1 and neg==1):
        for i in range(n):
            sum += abs(a[i])
     
    elif(pos == 1):
        # To find minimum value
        mini = a[0]
        sum = a[0]
        for i in range(1,n,1):
            mini = min(mini, a[i])
            sum += a[i]
         
        # Remove minimum element
        sum -= 2*mini
     
    elif(neg == 1):
        # Replace with absolute values
        for i in range(n):
            a[i] = abs(a[i])
             
        # To find minimum value
        mini = a[0]
        sum = a[0]
        for i in range(1,n):
            mini = min(mini, a[i])
            sum += a[i]
         
        # Remove minimum element
        sum -= 2*mini
            
    # Return the required sum
    return sum
 
# Driver code
if __name__ == '__main__':
    a = [1, 3, 5, -2, -6]
     
    n = len(a)
     
    # Function call
    print(Max_sum(a, n))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to maximum value after
// merging all elements in the array
using System;
 
class GFG
{
 
    // Function to maximum value after
    // merging all elements in the array
    static int Max_sum(int[] a, int n)
    {
        // To check if positive and negative
        // elements present or not
        int pos = 0, neg = 0;
 
        for (int i = 0; i < n; i++)
        {
            // Check for positive integer
            if (a[i] > 0)
                pos = 1;
 
            // Check for negative integer
            else if (a[i] < 0)
                neg = 1;
 
            // If both positive and negative
            // elements are present
            if ((pos == 1) && (neg == 1))
                break;
        }
 
        // To store maximum value possible
        int sum = 0;
 
        if ((pos == 1) && (neg == 1))
        {
            for (int i = 0; i < n; i++)
                sum += Math.Abs(a[i]);
        }
 
        else if (pos == 1)
        {
            // To find minimum value
            int mini = a[0];
            sum = a[0];
            for (int i = 1; i < n; i++)
            {
                mini = Math.Min(mini, a[i]);
                sum += a[i];
            }
 
            // Remove minimum element
            sum -= 2 * mini;
        }
 
        else if (neg == 1)
        {
            // Replace with absolute values
            for (int i = 0; i < n; i++)
                a[i] = Math.Abs(a[i]);
 
            // To find minimum value
            int mini = a[0];
            sum = a[0];
            for (int i = 1; i < n; i++)
            {
                mini = Math.Min(mini, a[i]);
                sum += a[i];
            }
 
            // Remove minimum element
            sum -= 2 * mini;
 
        }
 
        // Return the required sum
        return sum;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
 
        int[] a = { 1, 3, 5, -2, -6 };
        int n = a.Length;
         
        // Function call
        Console.WriteLine(Max_sum(a, n));
    }
}
 
// This code is contributed by
// sanjeev2552


Javascript




<script>
// Javascript program to maximum value after
// merging all elements in the array
 
// Function to maximum value after
// merging all elements in the array
function Max_sum(a, n)
{
    // To check if positive and negative
    // elements present or not
    let pos = 0, neg = 0;
     
    for(let i = 0; i < n; i++)
    {
        // Check for positive integer
        if(a[i] > 0)
            pos = 1;
             
        // Check for negative integer
        else if(a[i] < 0)
            neg = 1;
             
        // If both positive and negative
        // elements are present
        if(pos == 1 && neg == 1)
            break;
    }
     
    // To store maximum value possible
    let sum = 0;
     
    if(pos==1 && neg==1)
    {
        for(let i=0; i < n ; i++)
            sum += Math.abs(a[i]);
    }
     
    else if(pos == 1)
    {
        // To find minimum value
        let mini = a[0];
        sum = a[0];
        for(let i=1; i < n; i++)
        {
            mini = Math.min(mini, a[i]);
            sum += a[i];
        }   
         
        // Remove minimum element
        sum -= 2*mini;
    }   
     
    else if(neg == 1)
    {
        // Replace with absolute values
        for(let i = 0; i < n; i++)
            a[i] = Math.abs(a[i]);
             
        // To find minimum value
        let mini = a[0];
        sum = a[0];
        for(let i=1; i < n; i++)
        {
            mini = Math.min(mini, a[i]);
            sum += a[i];
        }   
         
        // Remove minimum element
        sum -= 2*mini;
         
    }
     
    // Return the required sum
    return sum;
}
 
// Driver code
    let a = [1, 3, 5, -2, -6];
     
    let n = a.length;
     
    // Function call
    document.write(Max_sum(a, n));
 
</script>


Output: 
 

17

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments