Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AISum of cousin nodes of a given node in a BST

Sum of cousin nodes of a given node in a BST

Given a binary search tree and a number N, the task is to find the sum of the cousins of the given node N if a node with given value ‘N’ is present in the given BST otherwise print -1.

Examples: 

Input: Node = 12 
Output: 40 
Cousins are 18 and 22 

Input: 19
Output: -1

Approach: Given below is the algorithm to solve the problem. 

  • Find the parent of the given node, if the node is not present return -1.
  • Traverse in the tree, find the level of each node while traversal.
  • If the level is the same as the given node. Check for the parent of that node, if the parent is different then add the node to the sum.

Below is the implementation of above approach:  

C++




// C++ program to find the sum of cousins
// of a node of a given BST
#include <bits/stdc++.h>
using namespace std;
 
// structure to store the binary tree
struct Tree {
    int data;
    struct Tree *left, *right;
};
 
// insertion of node in the binary tree
struct Tree* newNode(int data)
{
    // allocates memory
    struct Tree* node = (struct Tree*)malloc(sizeof(struct Tree));
 
    // initializes data
    node->data = data;
 
    // marks the left and right
    // child as NULL
    node->left = node->right = NULL;
 
    // Return the node after allocating memory
    return (node);
};
 
// Function which calculates the sum of the cousin Node
int SumOfCousin(struct Tree* root, int p,
                int level1, int level)
{
    int sum = 0;
    if (root == NULL)
        return 0;
 
    // nodes which has same parent
    // as the given node will not be
    // taken to count for calculation
    if (p == root->data)
        return 0;
 
    // if the level is same
    // then it is a cousin
    // as parent checking has been
    // done above
    if (level1 == level)
        return root->data;
 
    // traverse in the tree left and right
    else
        sum += SumOfCousin(root->left, p, level1 + 1, level) + SumOfCousin(root->right, p, level1 + 1, level);
 
    return sum;
}
 
// Function that returns the parent node
int ParentNode(struct Tree* root, int NodeData)
{
    int parent = -1;
 
    // traverse the full Binary tree
    while (root != NULL) {
 
        // if node is found
        if (NodeData == root->data)
            break;
 
        // if less than move to left
        else if (NodeData < root->data) {
            parent = root->data;
            root = root->left;
        }
 
        // if greater than move to right
        else {
            parent = root->data;
            root = root->right;
        }
    }
 
    // Node not found
    if (root == NULL)
        return -1;
    else
        return parent;
}
 
// Function to find the level of the given node
int LevelOfNode(struct Tree* root, int NodeData)
{
    // calculate the level of node
    int level = 0;
    while (root != NULL) {
 
        // if the node is found
        if (NodeData == root->data)
            break;
 
        // move to the left of the tree
        if (NodeData < root->data) {
            root = root->left;
        }
 
        // move to the right of the tree
        else {
            root = root->right;
        }
 
        // increase the level after every traversal
        level++;
    }
 
    // return the level of a given node
    return level;
}
 
// Driver Code
int main()
{
 
    // initialize the root as NULL
    struct Tree* root = NULL;
 
    // Inserts node in the tree
    // tree is the same as the one in image
    root = newNode(15);
    root->left = newNode(13);
    root->left->left = newNode(12);
    root->left->right = newNode(14);
    root->right = newNode(20);
    root->right->left = newNode(18);
    root->right->right = newNode(22);
 
    // Given Node
    int NodeData = 12;
    int p, level, sum;
 
    // function call to find the parent node
    p = ParentNode(root, NodeData);
 
    // if given Node is not present then print -1
    if (p == -1)
        cout << "-1\n";
 
    // if present then find the level of the node
    // and call the sum of cousin function
    else {
 
        // function call to find the level of that node
        level = LevelOfNode(root, NodeData);
 
        // sum of cousin nodes of the given nodes
        sum = SumOfCousin(root, p, 0, level);
 
        // print the sum
        cout << sum;
    }
    return 0;
}


Java




// Java program to find the sum of cousins
// of a node of a given BST
class GFG
{
 
// structure to store the binary tree
static class Tree
{
    int data;
    Tree left, right;
};
 
// insertion of node in the binary tree
static Tree newNode(int data)
{
    // allocates memory
    Tree node = new Tree();
 
    // initializes data
    node.data = data;
 
    // marks the left and right
    // child as null
    node.left = node.right = null;
 
    // Return the node after allocating memory
    return (node);
}
 
// Function which calculates
// the sum of the cousin Node
static int SumOfCousin(Tree root, int p,
                      int level1, int level)
{
    int sum = 0;
    if (root == null)
        return 0;
 
    // nodes which has same parent
    // as the given node will not be
    // taken to count for calculation
    if (p == root.data)
        return 0;
 
    // if the level is same
    // then it is a cousin
    // as parent checking has been
    // done above
    if (level1 == level)
        return root.data;
 
    // traverse in the tree left and right
    else
        sum += SumOfCousin(root.left, p, level1 + 1, level) +
               SumOfCousin(root.right, p, level1 + 1, level);
 
    return sum;
}
 
// Function that returns the parent node
static int ParentNode(Tree root, int NodeData)
{
    int parent = -1;
 
    // traverse the full Binary tree
    while (root != null)
    {
 
        // if node is found
        if (NodeData == root.data)
            break;
 
        // if less than move to left
        else if (NodeData < root.data)
        {
            parent = root.data;
            root = root.left;
        }
 
        // if greater than move to right
        else
        {
            parent = root.data;
            root = root.right;
        }
    }
 
    // Node not found
    if (root == null)
        return -1;
    else
        return parent;
}
 
// Function to find the level of the given node
static int LevelOfNode(Tree root, int NodeData)
{
    // calculate the level of node
    int level = 0;
    while (root != null)
    {
 
        // if the node is found
        if (NodeData == root.data)
            break;
 
        // move to the left of the tree
        if (NodeData < root.data)
        {
            root = root.left;
        }
 
        // move to the right of the tree
        else
        {
            root = root.right;
        }
 
        // increase the level after every traversal
        level++;
    }
 
    // return the level of a given node
    return level;
}
 
// Driver Code
public static void main(String[] args)
{
 
    // initialize the root as null
    Tree root = null;
 
    // Inserts node in the tree
    // tree is the same as the one in image
    root = newNode(15);
    root.left = newNode(13);
    root.left.left = newNode(12);
    root.left.right = newNode(14);
    root.right = newNode(20);
    root.right.left = newNode(18);
    root.right.right = newNode(22);
 
    // Given Node
    int NodeData = 12;
    int p, level, sum;
 
    // function call to find the parent node
    p = ParentNode(root, NodeData);
 
    // if given Node is not present then print -1
    if (p == -1)
        System.out.print("-1\n");
 
    // if present then find the level of the node
    // and call the sum of cousin function
    else
    {
 
        // function call to find the level of that node
        level = LevelOfNode(root, NodeData);
 
        // sum of cousin nodes of the given nodes
        sum = SumOfCousin(root, p, 0, level);
 
        // print the sum
        System.out.print(sum);
    }
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to find the sum of cousins
# of a node of a given BST
 
# structure to store the binary tree
class newNode:
     
    def __init__(self, data):
         
        self.data = data
        self.left = None
        self.right = None
 
# Function which calculates the
# sum of the cousin Node
def SumOfCousin(root, p, level1, level):
     
    sum = 0
     
    if (root == None):
        return 0
 
    # Nodes which has same parent
    # as the given node will not be
    # taken to count for calculation
    if (p == root.data):
        return 0
 
    # If the level is same
    # then it is a cousin
    # as parent checking has been
    # done above
    if (level1 == level):
        return root.data
 
    # Traverse in the tree left and right
    else:
        sum += (SumOfCousin(root.left, p,
                            level1 + 1, level) +
                SumOfCousin(root.right, p, 
                            level1 + 1, level))
 
    return sum
 
# Function that returns the parent node
def ParentNode(root, NodeData):
     
    parent = -1
 
    # Traverse the full Binary tree
    while (root != None):
         
        # If node is found
        if (NodeData == root.data):
            break
 
        # If less than move to left
        elif (NodeData < root.data):
            parent = root.data
            root = root.left
 
        # If greater than move to right
        else:
            parent = root.data
            root = root.right
 
    # Node not found
    if (root == None):
        return -1
    else:
        return parent
 
# Function to find the level of
# the given node
def LevelOfNode(root, NodeData):
     
    # Calculate the level of node
    level = 0
     
    while (root != None):
         
        # If the node is found
        if (NodeData == root.data):
            break
 
        # Move to the left of the tree
        if (NodeData < root.data):
            root = root.left
 
        # Move to the right of the tree
        else:
            root = root.right
 
        # Increase the level after every traversal
        level += 1
 
    # Return the level of a given node
    return level
 
# Driver Code
if __name__ == '__main__':
     
    # Initialize the root as NULL
    root = None
 
    # Inserts node in the tree
    # tree is the same as the
    # one in image
    root = newNode(15)
    root.left = newNode(13)
    root.left.left = newNode(12)
    root.left.right = newNode(14)
    root.right = newNode(20)
    root.right.left = newNode(18)
    root.right.right = newNode(22)
 
    # Given Node
    NodeData = 12
     
    # Function call to find the parent node
    p = ParentNode(root, NodeData)
 
    # If given Node is not present then print -1
    if (p == -1):
        print("-1")
 
    # If present then find the level of the node
    # and call the sum of cousin function
    else:
         
        # Function call to find the
        # level of that node
        level = LevelOfNode(root, NodeData)
 
        # Sum of cousin nodes of the given nodes
        sum = SumOfCousin(root, p, 0, level)
 
        # Print the sum
        print(sum)
 
# This code is contributed by bgangwar59


C#




// C# program to find the sum of cousins
// of a node of a given BST
using System;
 
class GFG
{
 
// structure to store the binary tree
class Tree
{
    public int data;
    public Tree left, right;
};
 
// insertion of node in the binary tree
static Tree newNode(int data)
{
    // allocates memory
    Tree node = new Tree();
 
    // initializes data
    node.data = data;
 
    // marks the left and right
    // child as null
    node.left = node.right = null;
 
    // Return the node after allocating memory
    return (node);
}
 
// Function which calculates
// the sum of the cousin Node
static int SumOfCousin(Tree root, int p,
                       int level1, int level)
{
    int sum = 0;
    if (root == null)
        return 0;
 
    // nodes which has same parent
    // as the given node will not be
    // taken to count for calculation
    if (p == root.data)
        return 0;
 
    // if the level is same
    // then it is a cousin
    // as parent checking has been
    // done above
    if (level1 == level)
        return root.data;
 
    // traverse in the tree left and right
    else
        sum += SumOfCousin(root.left, p,
                           level1 + 1, level) +
               SumOfCousin(root.right, p,
                           level1 + 1, level);
 
    return sum;
}
 
// Function that returns the parent node
static int ParentNode(Tree root,
                      int NodeData)
{
    int parent = -1;
 
    // traverse the full Binary tree
    while (root != null)
    {
 
        // if node is found
        if (NodeData == root.data)
            break;
 
        // if less than move to left
        else if (NodeData < root.data)
        {
            parent = root.data;
            root = root.left;
        }
 
        // if greater than move to right
        else
        {
            parent = root.data;
            root = root.right;
        }
    }
 
    // Node not found
    if (root == null)
        return -1;
    else
        return parent;
}
 
// Function to find the level of the given node
static int LevelOfNode(Tree root, int NodeData)
{
    // calculate the level of node
    int level = 0;
    while (root != null)
    {
 
        // if the node is found
        if (NodeData == root.data)
            break;
 
        // move to the left of the tree
        if (NodeData < root.data)
        {
            root = root.left;
        }
 
        // move to the right of the tree
        else
        {
            root = root.right;
        }
 
        // increase the level
        // after every traversal
        level++;
    }
 
    // return the level of a given node
    return level;
}
 
// Driver Code
public static void Main(String[] args)
{
 
    // initialize the root as null
    Tree root = null;
 
    // Inserts node in the tree
    // tree is the same as the one in image
    root = newNode(15);
    root.left = newNode(13);
    root.left.left = newNode(12);
    root.left.right = newNode(14);
    root.right = newNode(20);
    root.right.left = newNode(18);
    root.right.right = newNode(22);
 
    // Given Node
    int NodeData = 12;
    int p, level, sum;
 
    // function call to find the parent node
    p = ParentNode(root, NodeData);
 
    // if given Node is not present
    // then print -1
    if (p == -1)
        Console.Write("-1\n");
 
    // if present then find the level of the node
    // and call the sum of cousin function
    else
    {
 
        // function call to find the level of that node
        level = LevelOfNode(root, NodeData);
 
        // sum of cousin nodes of the given nodes
        sum = SumOfCousin(root, p, 0, level);
 
        // print the sum
        Console.Write(sum);
    }
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript program to find the sum of
// cousins of a node of a given BST
 
// Structure to store the binary tree
class Tree
{
    constructor(data)
    {
        this.left = null;
        this.right = null;
        this.data = data;
    }
}
 
// Insertion of node in the binary tree
function newNode(data)
{
     
    // Allocates memory
    let node = new Tree(data);
 
    // Return the node after
    // allocating memory
    return (node);
}
 
// Function which calculates
// the sum of the cousin Node
function SumOfCousin(root, p, level1, level)
{
    let sum = 0;
     
    if (root == null)
        return 0;
 
    // Nodes which has same parent
    // as the given node will not be
    // taken to count for calculation
    if (p == root.data)
        return 0;
 
    // If the level is same
    // then it is a cousin
    // as parent checking has been
    // done above
    if (level1 == level)
        return root.data;
 
    // Traverse in the tree left and right
    else
        sum += SumOfCousin(root.left, p,
                           level1 + 1, level) +
               SumOfCousin(root.right, p,
                           level1 + 1, level);
 
    return sum;
}
 
// Function that returns the parent node
function ParentNode(root, NodeData)
{
    let parent = -1;
 
    // Traverse the full Binary tree
    while (root != null)
    {
         
        // If node is found
        if (NodeData == root.data)
            break;
 
        // If less than move to left
        else if (NodeData < root.data)
        {
            parent = root.data;
            root = root.left;
        }
 
        // If greater than move to right
        else
        {
            parent = root.data;
            root = root.right;
        }
    }
 
    // Node not found
    if (root == null)
        return -1;
    else
        return parent;
}
 
// Function to find the level of the given node
function LevelOfNode(root, NodeData)
{
     
    // Calculate the level of node
    let level = 0;
    while (root != null)
    {
         
        // If the node is found
        if (NodeData == root.data)
            break;
 
        // Move to the left of the tree
        if (NodeData < root.data)
        {
            root = root.left;
        }
 
        // Move to the right of the tree
        else
        {
            root = root.right;
        }
 
        // Increase the level
        // after every traversal
        level++;
    }
 
    // Return the level of a given node
    return level;
}
 
// Driver code
 
// Initialize the root as null
let root = null;
 
// Inserts node in the tree
// tree is the same as the one in image
root = newNode(15);
root.left = newNode(13);
root.left.left = newNode(12);
root.left.right = newNode(14);
root.right = newNode(20);
root.right.left = newNode(18);
root.right.right = newNode(22);
 
// Given Node
let NodeData = 12;
let p, level, sum;
 
// Function call to find the parent node
p = ParentNode(root, NodeData);
 
// If given Node is not present
// then print -1
if (p == -1)
    document.write("-1" + "</br>");
 
// If present then find the level of the node
// and call the sum of cousin function
else
{
     
    // Function call to find the level of that node
    level = LevelOfNode(root, NodeData);
 
    // Sum of cousin nodes of the given nodes
    sum = SumOfCousin(root, p, 0, level);
 
    // Print the sum
    document.write(sum);
}
 
// This code is contributed by divyeshrabadiya07
 
</script>


Output

40

The time complexity is O(h), where h is the height of the binary search tree. This is because in the worst case scenario, the program needs to traverse the entire height of the tree to find the given node, its parent, and its level. This is why the time complexity is proportional to the height of the tree.

The space complexity is O(h), where h is the height of the binary search tree. This is because the function calls are stored in the call stack, and the maximum number of function calls that can be stored in the call stack is proportional to the height of the tree. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments