Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind the minimum dominating set of a Binary tree

Find the minimum dominating set of a Binary tree

Given a binary tree with N nodes numbered [1, N], the task is to find the size of the smallest Dominating set of that tree.

A set of nodes is said to be a dominating node if every node in the binary tree not present in the set is an immediate child/parent to any node in that set.

Examples:

Input: 
                     1
                    /
                   2
                  / \
                 4   3
               /
              5
            /  \
           6    7
          / \    \
         8   9   10
Output:  3
Explanation: 
Smallest dominating set is {2, 6, 7}

Input: 
                     1
                   /   \
                  2     3
                 / \   / \
                4   5 6   7
               / \   /
              8  9  10
Output:  4
Explanation: 
One of the smallest
dominating set = {2, 3, 6, 4}

Approach: 
In order to solve this problem we are using a dynamic programming approach by defining the following two states for every node:

  • The first state compulsory tells us whether it is compulsory to choose the node in the set or not.
  • The second state covered, tells us whether the node’s parent/child is in the set or not.

If it is compulsory to choose the node, we choose it and mark its children as covered. Otherwise, we have an option to choose it or reject it and then update its children as covered or not accordingly. Check the states for every node and find the required size of the set accordingly.
Below code is the implementation of the above approach:

C++




/* C++ program to find the size of the
minimum dominating set of the tree */
 
#include <bits/stdc++.h>
using namespace std;
 
#define N 1005
 
// Definition of a tree node
struct Node {
    int data;
    Node *left, *right;
};
 
/* Helper function that allocates a
new node */
Node* newNode(int data)
{
    Node* node = new Node();
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
 
// DP array to precompute
// and store the results
int dp[N][5][5];
 
// minDominatingSettion to return the size of
// the minimum dominating set of the array
int minDominatingSet(Node* root, int covered,
                     int compulsory)
{
    // Base case
    if (!root)
        return 0;
 
    // Setting the compulsory value if needed
    if (!root->left and !root->right and !covered)
        compulsory = true;
 
    // Check if the answer is already computed
    if (dp[root->data][covered][compulsory] != -1)
        return dp[root->data][covered][compulsory];
 
    // If it is compulsory to select
    // the node
    if (compulsory) {
        // Choose the node and set its children as covered
        return dp[root->data]
                 [covered]
                 [compulsory]
               = 1
                 + minDominatingSet(
                       root->left, 1, 0)
                 + minDominatingSet(
                       root->right, 1, 0);
    }
 
    // If it is covered
    if (covered) {
        return dp[root->data]
                 [covered]
                 [compulsory]
               = min(
                   1
                       + minDominatingSet(
                             root->left, 1, 0)
                       + minDominatingSet(
                             root->right, 1, 0),
                   minDominatingSet(
                       root->left, 0, 0)
                       + minDominatingSet(
                             root->right, 0, 0));
    }
 
    // If the current node is neither covered nor
    // needs to be selected compulsorily
    int ans = 1
              + minDominatingSet(
                    root->left, 1, 0)
              + minDominatingSet(
                    root->right, 1, 0);
 
    if (root->left) {
        ans = min(ans,
                  minDominatingSet(
                      root->left, 0, 1)
                      + minDominatingSet(
                            root->right, 0, 0));
    }
    if (root->right) {
        ans = min(ans,
                  minDominatingSet(
                      root->left, 0, 0)
                      + minDominatingSet(
                            root->right, 0, 1));
    }
 
    // Store the result
    return dp[root->data]
             [covered]
             [compulsory]
           = ans;
}
 
// Driver code
signed main()
{
    // initialising the DP array
    memset(dp, -1, sizeof(dp));
 
    // Constructing the tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->left->left = newNode(3);
    root->left->right = newNode(4);
    root->left->left->left = newNode(5);
    root->left->left->left->left = newNode(6);
    root->left->left->left->right = newNode(7);
    root->left->left->left->right->right = newNode(10);
    root->left->left->left->left->left = newNode(8);
    root->left->left->left->left->right = newNode(9);
 
    cout << minDominatingSet(root, 0, 0) << endl;
 
    return 0;
}


Java




// Java program to find the size of the
//minimum dominating set of the tree
import java.util.*;
 
class GFG{
 
static final int N = 1005;
 
// Definition of a tree node
static class Node
{
    int data;
    Node left, right;
};
 
// Helper function that allocates a
// new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return node;
}
 
// DP array to precompute
// and store the results
static int [][][]dp = new int[N][5][5];
 
// minDominatingSettion to return the size of
// the minimum dominating set of the array
static int minDominatingSet(Node root,
                            int covered,
                            int compulsory)
{
    // Base case
    if (root == null)
        return 0;
     
    // Setting the compulsory value if needed
    if (root.left != null &&
       root.right != null &&
       covered > 0)
        compulsory = 1;
 
    // Check if the answer is already computed
    if (dp[root.data][covered][compulsory] != -1)
        return dp[root.data][covered][compulsory];
 
    // If it is compulsory to select
    // the node
    if (compulsory > 0)
    {
         
        // Choose the node and set its
        // children as covered
        return dp[root.data][covered][compulsory] = 1 +
                 minDominatingSet(root.left, 1, 0) +
                 minDominatingSet(root.right, 1, 0);
    }
 
    // If it is covered
    if (covered > 0)
    {
        return dp[root.data][covered]
                 [compulsory] = Math.min(1 +
                  minDominatingSet(root.left, 1, 0) +
                  minDominatingSet(root.right, 1, 0),
                  minDominatingSet(root.left, 0, 0)+
                  minDominatingSet(root.right, 0, 0));
    }
 
    // If the current node is neither covered nor
    // needs to be selected compulsorily
    int ans = 1 + minDominatingSet(root.left, 1, 0) +
                  minDominatingSet(root.right, 1, 0);
 
    if (root.left != null)
    {
        ans = Math.min(ans,
              minDominatingSet(root.left, 0, 1) +
              minDominatingSet(root.right, 0, 0));
    }
    if (root.right != null)
    {
        ans = Math.min(ans,
              minDominatingSet(root.left, 0, 0) +
              minDominatingSet(root.right, 0, 1));
    }
 
    // Store the result
    return dp[root.data][covered][compulsory] = ans;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Initialising the DP array
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < 5; j++)
        {
            for(int l = 0; l < 5; l++)
                dp[i][j][l] = -1;
        }
    }
 
    // Constructing the tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(4);
    root.left.left.left = newNode(5);
    root.left.left.left.left = newNode(6);
    root.left.left.left.right = newNode(7);
    root.left.left.left.right.right = newNode(10);
    root.left.left.left.left.left = newNode(8);
    root.left.left.left.left.right = newNode(9);
 
    System.out.print(minDominatingSet(
        root, 0, 0) + "\n");
}
}
 
// This code is contributed by amal kumar choubey


Python3




# Python3 program to find the size of the
# minimum dominating set of the tree */
N = 1005
  
# Definition of a tree node
class Node:
     
    def __init__(self, data):
         
        self.data = data
        self.left = None
        self.right = None
      
# Helper function that allocates a
# new node
def newNode(data):
 
    node = Node(data)
    return node
  
# DP array to precompute
# and store the results
dp = [[[-1 for i in range(5)] for j in range(5)] for k in range(N)];
  
# minDominatingSettion to return the size of
# the minimum dominating set of the array
def minDominatingSet(root, covered, compulsory):
 
    # Base case
    if (not root):
        return 0;
  
    # Setting the compulsory value if needed
    if (not root.left and not root.right and not covered):
        compulsory = True;
  
    # Check if the answer is already computed
    if (dp[root.data][covered][compulsory] != -1):
        return dp[root.data][covered][compulsory];
  
    # If it is compulsory to select
    # the node
    if (compulsory):
         
        dp[root.data][covered][compulsory] = 1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0);
         
        # Choose the node and set its children as covered
        return dp[root.data][covered][compulsory]
      
    # If it is covered
    if (covered):
        dp[root.data][covered][compulsory] = min(1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0),minDominatingSet(root.left, 0, 0)+ minDominatingSet(root.right, 0, 0));
        return dp[root.data][covered][compulsory]
      
    # If the current node is neither covered nor
    # needs to be selected compulsorily
    ans = 1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0);
  
    if (root.left):
        ans = min(ans, minDominatingSet(root.left, 0, 1) + minDominatingSet(root.right, 0, 0));
     
    if (root.right):
        ans = min(ans, minDominatingSet( root.left, 0, 0) + minDominatingSet(root.right, 0, 1));
      
    # Store the result
    dp[root.data][covered][compulsory]= ans;
    return ans
 
# Driver code
if __name__=='__main__':
      
    # Constructing the tree
    root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(4);
    root.left.left.left = newNode(5);
    root.left.left.left.left = newNode(6);
    root.left.left.left.right = newNode(7);
    root.left.left.left.right.right = newNode(10);
    root.left.left.left.left.left = newNode(8);
    root.left.left.left.left.right = newNode(9);
  
    print(minDominatingSet(root, 0, 0))
   
  # This code is contributed by rutvik_56


C#




// C# program to find the size of the
//minimum dominating set of the tree
using System;
class GFG{
 
static readonly int N = 1005;
 
// Definition of a tree node
public class Node
{
    public
 int data;
    public
 Node left, right;
};
 
// Helper function that allocates a
// new node
public static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return node;
}
 
// DP array to precompute
// and store the results
static int [,,]dp = new int[N, 5, 5];
 
// minDominatingSettion to return the size of
// the minimum dominating set of the array
static int minDominatingSet(Node root,
                            int covered,
                            int compulsory)
{
    // Base case
    if (root == null)
        return 0;
     
    // Setting the compulsory value if needed
    if (root.left != null &&
       root.right != null &&
       covered > 0)
        compulsory = 1;
 
    // Check if the answer is already computed
    if (dp[root.data, covered, compulsory] != -1)
        return dp[root.data, covered, compulsory];
 
    // If it is compulsory to select
    // the node
    if (compulsory > 0)
    {
         
        // Choose the node and set its
        // children as covered
        return dp[root.data, covered, compulsory] = 1 +
                    minDominatingSet(root.left, 1, 0) +
                   minDominatingSet(root.right, 1, 0);
    }
 
    // If it is covered
    if (covered > 0)
    {
        return dp[root.data, covered, compulsory] = Math.Min(1 +
                             minDominatingSet(root.left, 1, 0) +
                             minDominatingSet(root.right, 1, 0),
                             minDominatingSet(root.left, 0, 0)+
                            minDominatingSet(root.right, 0, 0));
    }
 
    // If the current node is neither covered nor
    // needs to be selected compulsorily
    int ans = 1 + minDominatingSet(root.left, 1, 0) +
                  minDominatingSet(root.right, 1, 0);
 
    if (root.left != null)
    {
        ans = Math.Min(ans,
              minDominatingSet(root.left, 0, 1) +
              minDominatingSet(root.right, 0, 0));
    }
    if (root.right != null)
    {
        ans = Math.Min(ans,
              minDominatingSet(root.left, 0, 0) +
              minDominatingSet(root.right, 0, 1));
    }
 
    // Store the result
    return dp[root.data, covered, compulsory] = ans;
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Initialising the DP array
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < 5; j++)
        {
            for(int l = 0; l < 5; l++)
                dp[i, j, l] = -1;
        }
    }
 
    // Constructing the tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(4);
    root.left.left.left = newNode(5);
    root.left.left.left.left = newNode(6);
    root.left.left.left.right = newNode(7);
    root.left.left.left.right.right = newNode(10);
    root.left.left.left.left.left = newNode(8);
    root.left.left.left.left.right = newNode(9);
 
    Console.Write(minDominatingSet
                  root, 0, 0) + "\n");
}
}
 
// This code is contributed by Rohit_ranjan


Javascript




<script>
 
    // JavaScript program to find the size of the
    //minimum dominating set of the tree
     
    let N = 1005;
  
    // Definition of a tree node
    class Node
    {
       constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // Helper function that allocates a
    // new node
    function newNode(data)
    {
        let node = new Node(data);
        return node;
    }
 
    // DP array to precompute
    // and store the results
    let dp = new Array(N);
 
    // minDominatingSettion to return the size of
    // the minimum dominating set of the array
    function minDominatingSet(root, covered, compulsory)
    {
        // Base case
        if (root == null)
            return 0;
 
        // Setting the compulsory value if needed
        if (root.left != null &&
           root.right != null &&
           covered > 0)
            compulsory = 1;
 
        // Check if the answer is already computed
        if (dp[root.data][covered][compulsory] != -1)
            return dp[root.data][covered][compulsory];
 
        // If it is compulsory to select
        // the node
        if (compulsory > 0)
        {
 
            // Choose the node and set its
            // children as covered
            return dp[root.data][covered][compulsory] = 1 +
                     minDominatingSet(root.left, 1, 0) +
                     minDominatingSet(root.right, 1, 0);
        }
 
        // If it is covered
        if (covered > 0)
        {
            return dp[root.data][covered]
                     [compulsory] = Math.min(1 +
                      minDominatingSet(root.left, 1, 0) +
                      minDominatingSet(root.right, 1, 0),
                      minDominatingSet(root.left, 0, 0)+
                      minDominatingSet(root.right, 0, 0));
        }
 
        // If the current node is neither covered nor
        // needs to be selected compulsorily
        let ans = 1 + minDominatingSet(root.left, 1, 0) +
                      minDominatingSet(root.right, 1, 0);
 
        if (root.left != null)
        {
            ans = Math.min(ans,
                  minDominatingSet(root.left, 0, 1) +
                  minDominatingSet(root.right, 0, 0));
        }
        if (root.right != null)
        {
            ans = Math.min(ans,
                  minDominatingSet(root.left, 0, 0) +
                  minDominatingSet(root.right, 0, 1));
        }
 
        // Store the result
        dp[root.data][covered][compulsory] = ans;
        return dp[root.data][covered][compulsory];
    }
     
    // Initialising the DP array
    for(let i = 0; i < N; i++)
    {
        dp[i] = new Array(5);
        for(let j = 0; j < 5; j++)
        {
            dp[i][j] = new Array(5);
            for(let l = 0; l < 5; l++)
                dp[i][j][l] = -1;
        }
    }
  
    // Constructing the tree
    let root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(4);
    root.left.left.left = newNode(5);
    root.left.left.left.left = newNode(6);
    root.left.left.left.right = newNode(7);
    root.left.left.left.right.right = newNode(10);
    root.left.left.left.left.left = newNode(8);
    root.left.left.left.left.right = newNode(9);
  
    document.write(minDominatingSet(root, 0, 0));
             
</script>


Output: 

3

 

Time Complexity: O(N) 
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments