Given a binary tree with N nodes numbered [1, N], the task is to find the size of the smallest Dominating set of that tree.
A set of nodes is said to be a dominating node if every node in the binary tree not present in the set is an immediate child/parent to any node in that set.
Examples:
Input: 1 / 2 / \ 4 3 / 5 / \ 6 7 / \ \ 8 9 10 Output: 3 Explanation: Smallest dominating set is {2, 6, 7} Input: 1 / \ 2 3 / \ / \ 4 5 6 7 / \ / 8 9 10 Output: 4 Explanation: One of the smallest dominating set = {2, 3, 6, 4}
Approach:
In order to solve this problem we are using a dynamic programming approach by defining the following two states for every node:
- The first state compulsory tells us whether it is compulsory to choose the node in the set or not.
- The second state covered, tells us whether the node’s parent/child is in the set or not.
If it is compulsory to choose the node, we choose it and mark its children as covered. Otherwise, we have an option to choose it or reject it and then update its children as covered or not accordingly. Check the states for every node and find the required size of the set accordingly.
Below code is the implementation of the above approach:
C++
/* C++ program to find the size of the minimum dominating set of the tree */ #include <bits/stdc++.h> using namespace std; #define N 1005 // Definition of a tree node struct Node { int data; Node *left, *right; }; /* Helper function that allocates a new node */ Node* newNode( int data) { Node* node = new Node(); node->data = data; node->left = node->right = NULL; return node; } // DP array to precompute // and store the results int dp[N][5][5]; // minDominatingSettion to return the size of // the minimum dominating set of the array int minDominatingSet(Node* root, int covered, int compulsory) { // Base case if (!root) return 0; // Setting the compulsory value if needed if (!root->left and !root->right and !covered) compulsory = true ; // Check if the answer is already computed if (dp[root->data][covered][compulsory] != -1) return dp[root->data][covered][compulsory]; // If it is compulsory to select // the node if (compulsory) { // Choose the node and set its children as covered return dp[root->data] [covered] [compulsory] = 1 + minDominatingSet( root->left, 1, 0) + minDominatingSet( root->right, 1, 0); } // If it is covered if (covered) { return dp[root->data] [covered] [compulsory] = min( 1 + minDominatingSet( root->left, 1, 0) + minDominatingSet( root->right, 1, 0), minDominatingSet( root->left, 0, 0) + minDominatingSet( root->right, 0, 0)); } // If the current node is neither covered nor // needs to be selected compulsorily int ans = 1 + minDominatingSet( root->left, 1, 0) + minDominatingSet( root->right, 1, 0); if (root->left) { ans = min(ans, minDominatingSet( root->left, 0, 1) + minDominatingSet( root->right, 0, 0)); } if (root->right) { ans = min(ans, minDominatingSet( root->left, 0, 0) + minDominatingSet( root->right, 0, 1)); } // Store the result return dp[root->data] [covered] [compulsory] = ans; } // Driver code signed main() { // initialising the DP array memset (dp, -1, sizeof (dp)); // Constructing the tree Node* root = newNode(1); root->left = newNode(2); root->left->left = newNode(3); root->left->right = newNode(4); root->left->left->left = newNode(5); root->left->left->left->left = newNode(6); root->left->left->left->right = newNode(7); root->left->left->left->right->right = newNode(10); root->left->left->left->left->left = newNode(8); root->left->left->left->left->right = newNode(9); cout << minDominatingSet(root, 0, 0) << endl; return 0; } |
Java
// Java program to find the size of the //minimum dominating set of the tree import java.util.*; class GFG{ static final int N = 1005 ; // Definition of a tree node static class Node { int data; Node left, right; }; // Helper function that allocates a // new node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return node; } // DP array to precompute // and store the results static int [][][]dp = new int [N][ 5 ][ 5 ]; // minDominatingSettion to return the size of // the minimum dominating set of the array static int minDominatingSet(Node root, int covered, int compulsory) { // Base case if (root == null ) return 0 ; // Setting the compulsory value if needed if (root.left != null && root.right != null && covered > 0 ) compulsory = 1 ; // Check if the answer is already computed if (dp[root.data][covered][compulsory] != - 1 ) return dp[root.data][covered][compulsory]; // If it is compulsory to select // the node if (compulsory > 0 ) { // Choose the node and set its // children as covered return dp[root.data][covered][compulsory] = 1 + minDominatingSet(root.left, 1 , 0 ) + minDominatingSet(root.right, 1 , 0 ); } // If it is covered if (covered > 0 ) { return dp[root.data][covered] [compulsory] = Math.min( 1 + minDominatingSet(root.left, 1 , 0 ) + minDominatingSet(root.right, 1 , 0 ), minDominatingSet(root.left, 0 , 0 )+ minDominatingSet(root.right, 0 , 0 )); } // If the current node is neither covered nor // needs to be selected compulsorily int ans = 1 + minDominatingSet(root.left, 1 , 0 ) + minDominatingSet(root.right, 1 , 0 ); if (root.left != null ) { ans = Math.min(ans, minDominatingSet(root.left, 0 , 1 ) + minDominatingSet(root.right, 0 , 0 )); } if (root.right != null ) { ans = Math.min(ans, minDominatingSet(root.left, 0 , 0 ) + minDominatingSet(root.right, 0 , 1 )); } // Store the result return dp[root.data][covered][compulsory] = ans; } // Driver code public static void main(String[] args) { // Initialising the DP array for ( int i = 0 ; i < N; i++) { for ( int j = 0 ; j < 5 ; j++) { for ( int l = 0 ; l < 5 ; l++) dp[i][j][l] = - 1 ; } } // Constructing the tree Node root = newNode( 1 ); root.left = newNode( 2 ); root.left.left = newNode( 3 ); root.left.right = newNode( 4 ); root.left.left.left = newNode( 5 ); root.left.left.left.left = newNode( 6 ); root.left.left.left.right = newNode( 7 ); root.left.left.left.right.right = newNode( 10 ); root.left.left.left.left.left = newNode( 8 ); root.left.left.left.left.right = newNode( 9 ); System.out.print(minDominatingSet( root, 0 , 0 ) + "\n" ); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program to find the size of the # minimum dominating set of the tree */ N = 1005 # Definition of a tree node class Node: def __init__( self , data): self .data = data self .left = None self .right = None # Helper function that allocates a # new node def newNode(data): node = Node(data) return node # DP array to precompute # and store the results dp = [[[ - 1 for i in range ( 5 )] for j in range ( 5 )] for k in range (N)]; # minDominatingSettion to return the size of # the minimum dominating set of the array def minDominatingSet(root, covered, compulsory): # Base case if ( not root): return 0 ; # Setting the compulsory value if needed if ( not root.left and not root.right and not covered): compulsory = True ; # Check if the answer is already computed if (dp[root.data][covered][compulsory] ! = - 1 ): return dp[root.data][covered][compulsory]; # If it is compulsory to select # the node if (compulsory): dp[root.data][covered][compulsory] = 1 + minDominatingSet(root.left, 1 , 0 ) + minDominatingSet(root.right, 1 , 0 ); # Choose the node and set its children as covered return dp[root.data][covered][compulsory] # If it is covered if (covered): dp[root.data][covered][compulsory] = min ( 1 + minDominatingSet(root.left, 1 , 0 ) + minDominatingSet(root.right, 1 , 0 ),minDominatingSet(root.left, 0 , 0 ) + minDominatingSet(root.right, 0 , 0 )); return dp[root.data][covered][compulsory] # If the current node is neither covered nor # needs to be selected compulsorily ans = 1 + minDominatingSet(root.left, 1 , 0 ) + minDominatingSet(root.right, 1 , 0 ); if (root.left): ans = min (ans, minDominatingSet(root.left, 0 , 1 ) + minDominatingSet(root.right, 0 , 0 )); if (root.right): ans = min (ans, minDominatingSet( root.left, 0 , 0 ) + minDominatingSet(root.right, 0 , 1 )); # Store the result dp[root.data][covered][compulsory] = ans; return ans # Driver code if __name__ = = '__main__' : # Constructing the tree root = newNode( 1 ); root.left = newNode( 2 ); root.left.left = newNode( 3 ); root.left.right = newNode( 4 ); root.left.left.left = newNode( 5 ); root.left.left.left.left = newNode( 6 ); root.left.left.left.right = newNode( 7 ); root.left.left.left.right.right = newNode( 10 ); root.left.left.left.left.left = newNode( 8 ); root.left.left.left.left.right = newNode( 9 ); print (minDominatingSet(root, 0 , 0 )) # This code is contributed by rutvik_56 |
C#
// C# program to find the size of the //minimum dominating set of the tree using System; class GFG{ static readonly int N = 1005; // Definition of a tree node public class Node { public int data; public Node left, right; }; // Helper function that allocates a // new node public static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return node; } // DP array to precompute // and store the results static int [,,]dp = new int [N, 5, 5]; // minDominatingSettion to return the size of // the minimum dominating set of the array static int minDominatingSet(Node root, int covered, int compulsory) { // Base case if (root == null ) return 0; // Setting the compulsory value if needed if (root.left != null && root.right != null && covered > 0) compulsory = 1; // Check if the answer is already computed if (dp[root.data, covered, compulsory] != -1) return dp[root.data, covered, compulsory]; // If it is compulsory to select // the node if (compulsory > 0) { // Choose the node and set its // children as covered return dp[root.data, covered, compulsory] = 1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0); } // If it is covered if (covered > 0) { return dp[root.data, covered, compulsory] = Math.Min(1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0), minDominatingSet(root.left, 0, 0)+ minDominatingSet(root.right, 0, 0)); } // If the current node is neither covered nor // needs to be selected compulsorily int ans = 1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0); if (root.left != null ) { ans = Math.Min(ans, minDominatingSet(root.left, 0, 1) + minDominatingSet(root.right, 0, 0)); } if (root.right != null ) { ans = Math.Min(ans, minDominatingSet(root.left, 0, 0) + minDominatingSet(root.right, 0, 1)); } // Store the result return dp[root.data, covered, compulsory] = ans; } // Driver code public static void Main(String[] args) { // Initialising the DP array for ( int i = 0; i < N; i++) { for ( int j = 0; j < 5; j++) { for ( int l = 0; l < 5; l++) dp[i, j, l] = -1; } } // Constructing the tree Node root = newNode(1); root.left = newNode(2); root.left.left = newNode(3); root.left.right = newNode(4); root.left.left.left = newNode(5); root.left.left.left.left = newNode(6); root.left.left.left.right = newNode(7); root.left.left.left.right.right = newNode(10); root.left.left.left.left.left = newNode(8); root.left.left.left.left.right = newNode(9); Console.Write(minDominatingSet root, 0, 0) + "\n" ); } } // This code is contributed by Rohit_ranjan |
Javascript
<script> // JavaScript program to find the size of the //minimum dominating set of the tree let N = 1005; // Definition of a tree node class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // Helper function that allocates a // new node function newNode(data) { let node = new Node(data); return node; } // DP array to precompute // and store the results let dp = new Array(N); // minDominatingSettion to return the size of // the minimum dominating set of the array function minDominatingSet(root, covered, compulsory) { // Base case if (root == null ) return 0; // Setting the compulsory value if needed if (root.left != null && root.right != null && covered > 0) compulsory = 1; // Check if the answer is already computed if (dp[root.data][covered][compulsory] != -1) return dp[root.data][covered][compulsory]; // If it is compulsory to select // the node if (compulsory > 0) { // Choose the node and set its // children as covered return dp[root.data][covered][compulsory] = 1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0); } // If it is covered if (covered > 0) { return dp[root.data][covered] [compulsory] = Math.min(1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0), minDominatingSet(root.left, 0, 0)+ minDominatingSet(root.right, 0, 0)); } // If the current node is neither covered nor // needs to be selected compulsorily let ans = 1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0); if (root.left != null ) { ans = Math.min(ans, minDominatingSet(root.left, 0, 1) + minDominatingSet(root.right, 0, 0)); } if (root.right != null ) { ans = Math.min(ans, minDominatingSet(root.left, 0, 0) + minDominatingSet(root.right, 0, 1)); } // Store the result dp[root.data][covered][compulsory] = ans; return dp[root.data][covered][compulsory]; } // Initialising the DP array for (let i = 0; i < N; i++) { dp[i] = new Array(5); for (let j = 0; j < 5; j++) { dp[i][j] = new Array(5); for (let l = 0; l < 5; l++) dp[i][j][l] = -1; } } // Constructing the tree let root = newNode(1); root.left = newNode(2); root.left.left = newNode(3); root.left.right = newNode(4); root.left.left.left = newNode(5); root.left.left.left.left = newNode(6); root.left.left.left.right = newNode(7); root.left.left.left.right.right = newNode(10); root.left.left.left.left.left = newNode(8); root.left.left.left.left.right = newNode(9); document.write(minDominatingSet(root, 0, 0)); </script> |
3
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!