Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIMaximize profit in buying and selling stocks with Rest condition

Maximize profit in buying and selling stocks with Rest condition

The price of a stock on each day is given in an array arr[] for N days, the task is to find the maximum profit that can be made by buying and selling the stocks in those days with conditions that the stock must be sold before buying again and stock cannot be bought on the next day of selling a stock. (i.e, rest for at least one day).

Examples: 

Input: arr[] = {2, 4, 5, 0, 2} 
Output:
Explanation: Buy at cost 2 and sell at cost 4, profit = 2. Buy at cost 0 and sell at cost 2, profit = 2. Total profit = 4.

Input: arr[] = {2, 0, 5, 1, 8} 
Output:
 

Approach : 
Consider three states: REST, HOLD, and SOLD.

REST means not doing anything. 
HOLD means holding stock (bought a stock and have not sold). 
SOLD means state after selling the stock.

To reach the REST state, do nothing. 
To reach the HOLD state, buy the stock. 
To reach the SOLD state, sell the stock for which first there is a need to buy.
By the above actions, a transition diagram is made. 

By using this transition diagram the profit can be found out.
On ith day: 
 

  • rest[i] denotes maximum profit made by resting on day i. Since ith day is rest day, the stock might have been sold on (i-1)th day or might not have been sold. The value of rest[i] = max( rest[i-1], sold[i-1]).
  • hold[i] denotes maximum profit made by buying on ith day or by buying on some day before ith and resting on ith day. So, the value of hold[i] = max( hold[i-1], rest[i-1]+price[i]).
  • sold[i] denotes maximum profit by selling ith day. Stock must have been bought on some day before selling it on the ith day. Hence sold[i] = hold[i-1] + price[i]
     

Hence, the final answer will be the  

maximum of sold[n-1] and rest[n-1].

Below is the implementation of the above approach: 

C++




// C++ program for the above problem
#include <bits/stdc++.h>
using namespace std;
 
int maxProfit(int prices[], int n)
{
    // If there is only one day
    // for buying and selling
    // no profit can be made
    if (n <= 1)
        return 0;
 
    // Array to store Maxprofit by
    // resting on given day
    int rest[n] = { 0 };
 
    // Array to store Maxprofit by
    // buying or resting on the
    // given day
    int hold[n] = { 0 };
 
    // Array to store Maxprofit by
    // selling on given day
    int sold[n] = { 0 };
 
    // Initially there will 0 profit
    rest[0] = 0;
 
    // Buying on 1st day results
    // in negative profit
    hold[0] = -prices[0];
 
    // zero profit since selling
    // before buying isn't possible
    sold[0] = 0;
 
    for (int i = 1; i < n; i++) {
 
        // max of profit on (i-1)th
        // day by resting and profit
        // on (i-1)th day by selling.
        rest[i] = max(rest[i - 1],
                      sold[i - 1]);
 
        // max of profit by resting
        // on ith day and
        // buying on ith day.
        hold[i] = max(hold[i - 1],
                      rest[i - 1]
                          - prices[i]);
 
        // max of profit by selling
        // on ith day
        sold[i] = hold[i - 1] + prices[i];
    }
 
    // maxprofit
    return max(rest[n - 1],
               sold[n - 1]);
}
 
// Driver Code
int main()
{
    int price[] = { 2, 4,
                    5, 0, 2 };
    int n = sizeof(price)
            / sizeof(price[0]);
    cout << maxProfit(price, n)
         << endl;
    return 0;
}


Java




// Java program for the above problem
import java.io.*;
public class GFG{
 
static int maxProfit(int prices[], int n)
{
     
    // If there is only one day
    // for buying and selling
    // no profit can be made
    if (n <= 1)
        return 0;
 
    // Array to store Maxprofit by
    // resting on given day
    int rest[] = new int[n];
 
    // Array to store Maxprofit by
    // buying or resting on the
    // given day
    int hold[] = new int[9];
 
    // Array to store Maxprofit by
    // selling on given day
    int sold[] = new int[9];
 
    // Initially there will 0 profit
    rest[0] = 0;
 
    // Buying on 1st day results
    // in negative profit
    hold[0] = -prices[0];
 
    // Zero profit since selling
    // before buying isn't possible
    sold[0] = 0;
 
    for(int i = 1; i < n; i++)
    {
        
       // max of profit on (i-1)th
       // day by resting and profit
       // on (i-1)th day by selling.
       rest[i] = Math.max(rest[i - 1],
                          sold[i - 1]);
        
       // max of profit by resting
       // on ith day and
       // buying on ith day.
       hold[i] = Math.max(hold[i - 1],
                          rest[i - 1] -
                        prices[i]);
        
       // max of profit by selling
       // on ith day
       sold[i] = hold[i - 1] + prices[i];
    }
     
    // maxprofit
    return Math.max(rest[n - 1],
                    sold[n - 1]);
}
 
// Driver Code
public static void main(String[] args)
{
    int price[] = { 2, 4, 5, 0, 2 };
    int n = price.length;
     
    System.out.print(maxProfit(price, n) + "\n");
}
}
 
// This code is contributed by amal kumar choubey


Python3




# Python3 program for the above problem
def maxProfit(prices, n):
 
    # If there is only one day
    # for buying and selling
    # no profit can be made
    if (n <= 1):
        return 0
 
    # Array to store Maxprofit by
    # resting on given day
    rest = [0] * n
 
    # Array to store Maxprofit by
    # buying or resting on the
    # given day
    hold = [0] * n
 
    # Array to store Maxprofit by
    # selling on given day
    sold = [0] * n
 
    # Initially there will 0 profit
    rest[0] = 0
 
    # Buying on 1st day results
    # in negative profit
    hold[0] = -prices[0]
 
    # zero profit since selling
    # before buying isn't possible
    sold[0] = 0
 
    for i in range(1, n):
 
        # max of profit on (i-1)th
        # day by resting and profit
        # on (i-1)th day by selling.
        rest[i] = max(rest[i - 1],
                      sold[i - 1])
 
        # max of profit by resting
        # on ith day and
        # buying on ith day.
        hold[i] = max(hold[i - 1],
                      rest[i - 1] -
                    prices[i])
 
        # max of profit by selling
        # on ith day
        sold[i] = hold[i - 1] + prices[i]
     
    # maxprofit
    return max(rest[n - 1],
               sold[n - 1])
 
# Driver Code
price = [ 2, 4, 5, 0, 2 ]
n = len(price)
 
print(maxProfit(price, n))
 
# This code is contributed by avanitrachhadiya2155


C#




// C# program for the above problem
using System;
 
class GFG{
     
static int maxProfit(int[] prices, int n)
{
     
    // If there is only one day
    // for buying and selling
    // no profit can be made
    if (n <= 1)
        return 0;
 
    // Array to store Maxprofit by
    // resting on given day
    int[] rest = new int[n];
 
    // Array to store Maxprofit by
    // buying or resting on the
    // given day
    int[] hold = new int[9];
 
    // Array to store Maxprofit by
    // selling on given day
    int[] sold = new int[9];
 
    // Initially there will 0 profit
    rest[0] = 0;
 
    // Buying on 1st day results
    // in negative profit
    hold[0] = -prices[0];
 
    // Zero profit since selling
    // before buying isn't possible
    sold[0] = 0;
 
    for(int i = 1; i < n; i++)
    {
         
        // max of profit on (i-1)th
        // day by resting and profit
        // on (i-1)th day by selling.
        rest[i] = Math.Max(rest[i - 1],
                           sold[i - 1]);
             
        // max of profit by resting
        // on ith day and
        // buying on ith day.
        hold[i] = Math.Max(hold[i - 1],
                           rest[i - 1] -
                         prices[i]);
             
        // max of profit by selling
        // on ith day
        sold[i] = hold[i - 1] + prices[i];
    }
     
    // maxprofit
    return Math.Max(rest[n - 1],
                    sold[n - 1]);
}
 
// Driver code
static void Main()
{
    int[] price = { 2, 4, 5, 0, 2 };
    int n = price.Length;
 
    Console.WriteLine(maxProfit(price, n));
}
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
 
// JavaScript program for the above problem
 
function maxProfit( prices,  n)
{
    // If there is only one day
    // for buying and selling
    // no profit can be made
    if (n <= 1)
        return 0;
 
    // Array to store Maxprofit by
    // resting on given day
        let rest = [];
    for(let k = 0;k<n;k++)
         rest.push(0);
 
    // Array to store Maxprofit by
    // buying or resting on the
    // given day
        let hold = [];
    for(let k = 0;k<n;k++)
         hold.push(0);
 
    // Array to store Maxprofit by
    // selling on given day
    let sold = [];
    for(let k = 0;k<n;k++)
         sold.push(0);
 
    // Initially there will 0 profit
    rest[0] = 0;
 
    // Buying on 1st day results
    // in negative profit
    hold[0] = -prices[0];
 
    // zero profit since selling
    // before buying isn't possible
    sold[0] = 0;
 
    for (let i = 1; i < n; i++) {
 
        // max of profit on (i-1)th
        // day by resting and profit
        // on (i-1)th day by selling.
        rest[i] = Math.max(rest[i - 1],
                      sold[i - 1]);
 
        // max of profit by resting
        // on ith day and
        // buying on ith day.
        hold[i] = Math.max(hold[i - 1],
                      rest[i - 1]
                          - prices[i]);
 
        // max of profit by selling
        // on ith day
        sold[i] = hold[i - 1] + prices[i];
    }
 
    // maxprofit
    return Math.max(rest[n - 1],
               sold[n - 1]);
}
 
// Driver Code
let price = [ 2, 4,
                    5, 0, 2 ];
let n = price.length;
document.write( maxProfit(price, n),'<br>');
 
 
</script>


Output

4








Time Complexity: O(N) 
Auxiliary Space: O(N)

Recursive Approach:

Everyday, We have two choices : Buy/Sell this stock OR ignore and move to the next one.
Along with day, we also need to maintain a buy variable which will tell us that if we want 

to do a transaction today it will be of which type (Buy or Sell) and According to that we will 

make recursive calls and calculate the answer

C++




// C++ program for the above problem
#include <bits/stdc++.h>
using namespace std;
 
int f(int idx, int buy, int prices[], int n)
{
    if (idx >= n) {
        return 0;
    }
 
    int profit = 0;
    // you can either buy or not buy
    if (buy == 0) {
        profit
            = max(-prices[idx] + f(idx + 1, 1, prices, n),
                  f(idx + 1, 0, prices, n));
    }
    // you can either sell or not sell
    else {
        profit = max(prices[idx] + f(idx + 2, 0, prices, n),
                     f(idx + 1, 1, prices, n));
    }
 
    return profit;
}
 
int maxProfit(int prices[], int n)
{
 
    return f(0, 0, prices, n);
}
 
// Driver Code
int main()
{
    int price[] = { 2, 4, 5, 0, 2 };
    int n = sizeof(price) / sizeof(price[0]);
    cout << maxProfit(price, n) << endl;
    return 0;
}


Java




// Java program for the above approach
public class Main {
    public static int f(int idx, int buy, int[] prices, int n) {
        if (idx >= n) {
            return 0;
        }
     
        int profit = 0;
        // you can either buy or not buy
        if (buy == 0) {
            profit = Math.max(-prices[idx] + f(idx + 1, 1, prices, n),
                        f(idx + 1, 0, prices, n));
        }
        // you can either sell or not sell
        else {
            profit = Math.max(prices[idx] + f(idx + 2, 0, prices, n),
                        f(idx + 1, 1, prices, n));
        }
    // returning the profit
        return profit;
    }
    // MaxProfit function to call the f() func.
    public static int maxProfit(int[] prices, int n) {
        return f(0, 0, prices, n);
    }
   
 // Driver Code
    public static void main(String[] args) {
        int[] price = { 2, 4, 5, 0, 2 };
        int n = price.length;
        System.out.println(maxProfit(price, n));
    }
}


Python3




# Python program for the above problem
def f(idx, buy, prices, n):
    if idx >= n:
        return 0
 
    profit = 0
    # you can either buy or not buy
    if buy == 0:
        profit = max(-prices[idx] + f(idx + 1, 1, prices, n), f(idx + 1, 0, prices, n))
         
     # you can either sell or not sell
    else:
        profit = max(prices[idx] + f(idx + 2, 0, prices, n), f(idx + 1, 1, prices, n))
         
         
     #returning the profit
    return profit
 
 # MaxProfit function to call the f() func.
def maxProfit(prices, n):
    return f(0, 0, prices, n)
 
 
# Driver Code
price = [2, 4, 5, 0, 2]
n = len(price)
print(maxProfit(price, n))


C#




// C# code addition
using System;
 
public class MainClass {
  public static int f(int idx, int buy, int[] prices, int n) {
    if (idx >= n) {
      return 0;
    }
 
    int profit = 0;
     
    // you can either buy or not buy
    if (buy == 0) {
      profit = Math.Max(-prices[idx] + f(idx + 1, 1, prices, n),
                        f(idx + 1, 0, prices, n));
    }
     
    // you can either sell or not sell
    else {
      profit = Math.Max(prices[idx] + f(idx + 2, 0, prices, n),
                        f(idx + 1, 1, prices, n));
    }
    // returning the profit
    return profit;
  }
 
  // MaxProfit function to call the f() func.
  public static int maxProfit(int[] prices, int n) {
    return f(0, 0, prices, n);
  }
 
  // Driver Code
  public static void Main() {
    int[] price = { 2, 4, 5, 0, 2 };
    int n = price.Length;
    Console.WriteLine(maxProfit(price, n));
  }
}
 
// The code is contributed by Arushi Goel.


Javascript




// JavaScript program for the above problem
function f(idx, buy, prices, n) {
if (idx >= n) {
return 0;
}
let profit = 0;
// you can either buy or not buy
if (buy == 0) {
    profit = Math.max(-prices[idx] + f(idx + 1, 1, prices, n),
        f(idx + 1, 0, prices, n));
}
// you can either sell or not sell
else {
    profit = Math.max(prices[idx] + f(idx + 2, 0, prices, n),
        f(idx + 1, 1, prices, n));
}
 
return profit;
}
 
function maxProfit(prices, n) {
 
return f(0, 0, prices, n);
}
 
// Driver Code
const price = [2, 4, 5, 0, 2];
const n = price.length;
console.log(maxProfit(price, n));


Output

4








Time Complexity : O(2^N)
Auxiliary Space : O(N)

Memoization DP  Approach:

One more way we can approach this problem is by considering buying and selling as two different states of the dp.

C++




// C++ program for the above problem
#include <bits/stdc++.h>
using namespace std;
 
int f(int idx, int buy, int prices[],
      vector<vector<int> >& dp, int n)
{
    if (idx >= n) {
        return 0;
    }
 
    if (dp[idx][buy] != -1) {
        return dp[idx][buy];
    }
 
    int profit = 0;
    // you can either buy or not buy
    if (buy == 0) {
        dp[idx][buy] = profit = max(
            -prices[idx] + f(idx + 1, 1, prices, dp, n),
            f(idx + 1, 0, prices, dp, n));
    }
    // you can either sell or not sell
    else {
        dp[idx][buy] = profit = max(
            prices[idx] + f(idx + 2, 0, prices, dp, n),
            f(idx + 1, 1, prices, dp, n));
    }
 
    return profit;
}
 
int maxProfit(int prices[], int n)
{
    vector<vector<int> > dp(n, vector<int>(2, -1));
    return f(0, 0, prices, dp, n);
}
 
// Driver Code
int main()
{
    int price[] = { 2, 4, 5, 0, 2 };
    int n = sizeof(price) / sizeof(price[0]);
    cout << maxProfit(price, n) << endl;
    return 0;
}


Java




import java.util.*;
 
public class Main {
 
    // Recursive function to calculate profit
    static int f(int idx, int buy, int[] prices,
                 List<List<Integer> > dp, int n)
    {
        if (idx >= n) {
            return 0;
        }
 
        if (dp.get(idx).get(buy) != -1) {
            return dp.get(idx).get(buy);
        }
 
        int profit = 0;
        // you can either buy or not buy
        if (buy == 0) {
            dp.get(idx).set(
                buy, profit = Math.max(
                         -prices[idx]
                             + f(idx + 1, 1, prices, dp, n),
                         f(idx + 1, 0, prices, dp, n)));
        }
        // you can either sell or not sell
        else {
            dp.get(idx).set(
                buy, profit = Math.max(
                         prices[idx]
                             + f(idx + 2, 0, prices, dp, n),
                         f(idx + 1, 1, prices, dp, n)));
        }
 
        return profit;
    }
 
    // Function to calcutate max Profit
    static int maxProfit(int[] prices, int n)
    {
        List<List<Integer> > dp = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            dp.add(new ArrayList<>(Arrays.asList(-1, -1)));
        }
        return f(0, 0, prices, dp, n);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] price = { 2, 4, 5, 0, 2 };
        int n = price.length;
        System.out.println(maxProfit(price, n));
    }
}


Python3




from typing import List
 
# Recursive function to calculate profit
def f(idx: int, buy: int, prices: List[int],
      dp: List[List[int]], n: int) -> int:
    if idx >= n:
        return 0
 
    if dp[idx][buy] != -1:
        return dp[idx][buy]
 
    profit = 0
    # you can either buy or not buy
    if buy == 0:
        dp[idx][buy] = profit = max(-prices[idx] + f(idx + 1, 1, prices, dp, n),
                                    f(idx + 1, 0, prices, dp, n))
    # you can either sell or not sell
    else:
        dp[idx][buy] = profit = max(prices[idx] + f(idx + 2, 0, prices, dp, n),
                                    f(idx + 1, 1, prices, dp, n))
 
    return profit
 
# Function to calcutate max Profit
def maxProfit(prices: List[int], n: int) -> int:
    dp = [[-1, -1] for i in range(n)]
    return f(0, 0, prices, dp, n)
 
# Driver Code
if __name__ == '__main__':
    price = [2, 4, 5, 0, 2]
    n = len(price)
    print(maxProfit(price, n))


C#




using System;
 
class GFG
{
    static int F(int idx, int buy, int[] prices, int[][] dp, int n)
    {
        if (idx >= n)
        {
            return 0;
        }
 
        if (dp[idx][buy] != -1)
        {
            return dp[idx][buy];
        }
 
        int profit = 0;
 
        // You can either buy or not buy
        if (buy == 0)
        {
            dp[idx][buy] = profit = Math.Max(
                -prices[idx] + F(idx + 1, 1, prices, dp, n),
                F(idx + 1, 0, prices, dp, n));
        }
        // You can either sell or not sell
        else
        {
            dp[idx][buy] = profit = Math.Max(
                prices[idx] + F(idx + 2, 0, prices, dp, n),
                F(idx + 1, 1, prices, dp, n));
        }
 
        return profit;
    }
 
    static int MaxProfit(int[] prices, int n)
    {
        int[][] dp = new int[n][];
        for (int i = 0; i < n; i++)
        {
            dp[i] = new int[2];
            dp[i][0] = dp[i][1] = -1;
        }
 
        return F(0, 0, prices, dp, n);
    }
 
    static void Main()
    {
        int[] price = { 2, 4, 5, 0, 2 };
        int n = price.Length;
        Console.WriteLine(MaxProfit(price, n));
    }
}


Javascript




function maxProfit(prices) {
    const n = prices.length;
    const dp = new Array(n).fill().map(() => new Array(2).fill(-1));
 
    function f(idx, buy) {
        if (idx >= n) {
            return 0;
        }
 
        if (dp[idx][buy] !== -1) {
            return dp[idx][buy];
        }
 
        let profit = 0;
        // you can either buy or not buy
        if (buy === 0) {
            dp[idx][buy] = profit = Math.max(
                -prices[idx] + f(idx + 1, 1),
                f(idx + 1, 0)
            );
        }
        // you can either sell or not sell
        else {
            dp[idx][buy] = profit = Math.max(
                prices[idx] + f(idx + 2, 0),
                f(idx + 1, 1)
            );
        }
 
        return profit;
    }
 
    return f(0, 0);
}
 
// Driver Code
const price = [2, 4, 5, 0, 2];
console.log(maxProfit(price));
 
 
//Above code added by Avinash Wani


Output

4








Time Complexity : O(N)
Auxiliary Space : O(N)

One Pass Method:

Steps:

  • First, Initialize the variables for buying, selling, and their previous values.
  • second, traverse the array and compute the max profit that can be made by buying and selling the stocks.
  • Stores the previous value of buy before it is updated.
  • Compute the max profit that can be made by buying the stock on the current day or not buying it.
  • Again, store the previous value of sell before it is updated.
  • Compute the max profit that can be made by selling the stock on the current day or not selling it.
  • last return the max profit.

Below is code implementation for the above approach:

C++




// C++ implementation by using the one-pass method
 
#include <bits/stdc++.h>
using namespace std;
 
int maxProfit(int arr[], int n) {
    // Initialize the variables
    int buy = INT_MIN, prev_sell = 0, sell = 0, prev_buy;
  
    for(int i = 0; i < n; i++) {
        prev_buy = buy;
        buy = max(prev_sell - arr[i], prev_buy);
        prev_sell = sell;
        sell = max(prev_buy + arr[i], prev_sell);
    }
    // Return the maximum profit
    return sell;
}
 
// Driver Code
int main() {
     
    int arr[] = {2, 4, 5, 0, 2};
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << maxProfit(arr, n) << endl;
 
    return 0;
}


Java




public class Main {
    // Function to find the maximum profit that can be obtained from buying and selling stocks
    public static int maxProfit(int[] prices) {
        int buy = Integer.MIN_VALUE; // Initialize buy with a minimal value, representing no stocks bought
        int prevSell = 0; // Initialize previous sell with zero profit
        int sell = 0; // Initialize sell with zero profit
        int prevBuy; // Variable to store the previous buy value
 
        for (int price : prices) {
            prevBuy = buy; // Store the previous buy value before updating it
            // Calculate the new buy value, considering either the previous sell or the previous buy
            buy = Math.max(prevSell - price, prevBuy);
            prevSell = sell; // Store the previous sell value before updating it
            // Calculate the new sell value, considering either the previous buy or the previous sell
            sell = Math.max(prevBuy + price, prevSell);
        }
 
        return sell; // Return the maximum profit after all iterations
    }
 
    public static void main(String[] args) {
        int[] prices = {2, 4, 5, 0, 2};
        System.out.println(maxProfit(prices)); // Print the maximum profit
    }
}


C#




using System;
 
class MainClass {
    // Function to find the maximum profit that can be obtained from buying and selling stocks
    public static int MaxProfit(int[] prices) {
        int buy = int.MinValue;  // Initialize buy with a minimal value, representing no stocks bought
        int prevSell = 0;       // Initialize previous sell with zero profit
        int sell = 0;           // Initialize sell with zero profit
        int prevBuy;            // Variable to store the previous buy value
 
        foreach (int price in prices) {
            prevBuy = buy;  // Store the previous buy value before updating it
            // Calculate the new buy value, considering either the previous sell or the previous buy
            buy = Math.Max(prevSell - price, prevBuy);
            prevSell = sell;  // Store the previous sell value before updating it
            // Calculate the new sell value, considering either the previous buy or the previous sell
            sell = Math.Max(prevBuy + price, prevSell);
        }
 
        return sell;  // Return the maximum profit after all iterations
    }
 
    public static void Main (string[] args) {
        int[] prices = {2, 4, 5, 0, 2};
        Console.WriteLine(MaxProfit(prices));  // Print the maximum profit
    }
}


Output

4








Time Complexity: O(n) because it performs a single pass over the input array of size n.
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments