Given an array arr[] of size N, the task is to find the minimum number of operations required to make all array elements zero. In one operation, select a pair of elements and subtract the smaller element from both elements in the array.
Example:
Input: arr[] = {1, 2, 3, 4}
Output: 3
Explanation: Pick the elements in the following sequence:
Operation 1: Pick elements at indices {3, 2}: arr[]={1, 2, 0, 1}
Operation 2: Pick elements at indices {1, 3}: arr[]={1, 1, 0, 0}
Operation 3: Pick elements at indices {2, 1}: arr[]={0, 0, 0, 0}Input: arr[] = {2, 2, 2, 2}
Output: 2
Approach: This problem can be solved using a priority queue. To solve the below problem, follow the below steps:
- Traverse the array and push all the elements which are greater than 0, in the priority queue.
- Create a variable op, to store the number of operations, and initialise it with 0.
- Now, iterate over the priority queue pq till its size is greater than one in each iteration:
- Increment the value of variable op.
- Then select the top two elements, let’s say p and q to apply the given operation.
- After applying the operation, one element will definitely become 0. Push the other one back into the priority queue if it is greater than zero.
- Repeat the above operation until the priority queue becomes empty.
- Print op, as the answer to this question.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum number // of operations required to make all // array elements zero int setElementstoZero( int arr[], int N) { // Create a priority queue priority_queue< int > pq; // Variable to store the number // of operations int op = 0; for ( int i = 0; i < N; i++) { if (arr[i] > 0) { pq.push(arr[i]); } } // Iterate over the priority queue // till size is greater than 1 while (pq.size() > 1) { // Increment op by 1 op += 1; auto p = pq.top(); pq.pop(); auto q = pq.top(); pq.pop(); // If the element is still greater // than zero again push it again in pq if (p - q > 0) { pq.push(p); } } // Return op as the answer return op; } // Driver Code int main() { int arr[] = { 1, 2, 3, 4 }; int N = sizeof (arr) / sizeof (arr[0]); cout << setElementstoZero(arr, N); return 0; } |
Java
// Java code for the above approach import java.util.*; class CustomComparator implements Comparator<Integer> { @Override public int compare(Integer number1, Integer number2) { int value = number1.compareTo(number2); // elements are sorted in reverse order if (value > 0 ) { return - 1 ; } else if (value < 0 ) { return 1 ; } else { return 0 ; } } } class GFG { // Function to find the minimum number // of operations required to make all // array elements zero static int setElementstoZero( int arr[], int N) { // Create a priority queue PriorityQueue<Integer> pq = new PriorityQueue<Integer>( new CustomComparator()); // Variable to store the number // of operations int op = 0 ; for ( int i = 0 ; i < N; i++) { if (arr[i] > 0 ) { pq.add(arr[i]); } } // Iterate over the priority queue // till size is greater than 1 while (pq.size() > 1 ) { // Increment op by 1 op = op + 1 ; Integer p = pq.poll(); Integer q = pq.poll(); // If the element is still greater // than zero again push it again in pq if (p - q > 0 ) { pq.add(p); } } // Return op as the answer return op; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 }; int N = arr.length; System.out.println(setElementstoZero(arr, N)); } } // This code is contributed by Potta Lokesh |
Python3
# Python program for the above approach # Function to find the minimum number # of operations required to make all # array elements zero def setElementstoZero(arr, N): # Create a priority queue pq = [] # Variable to store the number # of operations op = 0 for i in range (N): if (arr[i] > 0 ): pq.append(arr[i]) pq.sort() # Iterate over the priority queue # till size is greater than 1 while ( len (pq) > 1 ): # Increment op by 1 op + = 1 p = pq[ len (pq) - 1 ] pq.pop() q = pq[ len (pq) - 1 ] pq.pop() # If the element is still greater # than zero again push it again in pq if (p - q > 0 ): pq.append(p) pq.sort() # Return op as the answer return op # Driver Code arr = [ 1 , 2 , 3 , 4 ] N = len (arr) print (setElementstoZero(arr, N)) # This code is contributed by Saurabh Jaiswal |
C#
// C# code for the above approach using System; using System.Collections.Generic; public class GFG { // Function to find the minimum number // of operations required to make all // array elements zero static int setElementstoZero( int [] arr, int N) { // Create a priority queue List< int > pq = new List< int >(); // Variable to store the number // of operations int op = 0; for ( int i = 0; i < N; i++) { if (arr[i] > 0) { pq.Add(arr[i]); } } // Iterate over the priority queue // till size is greater than 1 while (pq.Count > 1) { pq.Sort(); pq.Reverse(); // Increment op by 1 op = op + 1; int p = pq[0]; int q = pq[1]; pq.RemoveRange(0, 2); // If the element is still greater // than zero again push it again in pq if (p - q > 0) { pq.Add(p); } } // Return op as the answer return op; } // Driver Code public static void Main(String[] args) { int [] arr = { 1, 2, 3, 4 }; int N = arr.Length; Console.WriteLine(setElementstoZero(arr, N)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program for the above approach // Function to find the minimum number // of operations required to make all // array elements zero function setElementstoZero(arr, N) { // Create a priority queue var pq = []; // Variable to store the number // of operations var op = 0; for ( var i = 0; i < N; i++) { if (arr[i] > 0) { pq.push(arr[i]); } } pq.sort((a,b) => a-b); // Iterate over the priority queue // till size is greater than 1 while (pq.length > 1) { // Increment op by 1 op += 1; var p = pq[pq.length-1]; pq.pop(); var q = pq[pq.length-1]; pq.pop(); // If the element is still greater // than zero again push it again in pq if (p - q > 0) { pq.push(p); } pq.sort((a,b) => a-b); } // Return op as the answer return op; } // Driver Code var arr = [ 1, 2, 3, 4 ]; var N = arr.length; document.write(setElementstoZero(arr, N)); // This code is contributed by rutvik_56. </script> |
3
Time Complexity: O(NlogN)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!