Monday, November 18, 2024
Google search engine
HomeData Modelling & AICount minimum moves required to convert A to B

Count minimum moves required to convert A to B

Given two integers A and B, convert A to B by performing one of the following operations any number of times:

  • A = A + K
  • A = A – K, where K belongs to [1, 10]

The task is to find the minimum number of operations required to convert A to B using the above operations.

Examples:

Input: A = 13, B = 42
Output: 3
Explanation:
The following sequence of moves can be performed: 13 ? 23 ? 32 ? 42(add 10, add 9, add 10).

Input: A = 18, B = 4
Output: 2
Explanation:
The following sequence of moves can be performed: 18 ? 10 ? 4 (subtract 8, subtract 6).

Approach: The idea is to simply calculate the required number of moves by dividing the absolute difference of A and B by all the numbers in the range [1…10] and adding it to the resultant variable. Follow the steps below to solve the problem:

  • Initialize a variable required_moves to store the minimum count of moves required.
  • Find the absolute difference of A and B.
  • Iterate over the range [1, 10] and perform the following operations: 
    • Divide the number by i and add it to the resultant variable.
    • Calculate modulo of absolute difference by i
  • Finally, print the value of required_moves.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum number
// of moves to obtained B from A
void convertBfromA(int a, int b)
{
    // Stores the minimum
    // number of moves
    int moves = 0;
 
    // Absolute difference
    int x = abs(a - b);
 
    // K is in range [0, 10]
    for (int i = 10; i > 0; i--) {
        moves += x / i;
        x = x % i;
    }
 
    // Print the required moves
    cout << moves << " ";
}
 
// Driver Code
int main()
{
    int A = 188, B = 4;
 
    convertBfromA(A, B);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to find minimum number
// of moves to obtained B from A
static void convertBfromA(int a, int b)
{
     
    // Stores the minimum
    // number of moves
    int moves = 0;
 
    // Absolute difference
    int x = Math.abs(a - b);
 
    // K is in range [0, 10]
    for(int i = 10; i > 0; i--)
    {
        moves += x / i;
        x = x % i;
    }
 
    // Print the required moves
    System.out.print(moves + " ");
}
 
// Driver Code
public static void main (String[] args)
{
    int A = 188, B = 4;
 
    convertBfromA(A, B);
}
}
 
// This code is contributed by code_hunt


Python3




# Python3 program for the above approach
 
# Function to find minimum number
# of moves to obtained B from A
def convertBfromA(a, b):
     
    # Stores the minimum
    # number of moves
    moves = 0
 
    # Absolute difference
    x = abs(a - b)
 
    # K is in range [0, 10]
    for i in range(10, 0, -1):
        moves += x // i
        x = x % i
     
    # Print the required moves
    print(moves, end = " ")
 
# Driver Code
A = 188
B = 4
 
convertBfromA(A, B)
 
# This code is contributed by code_hunt


C#




// C# program for the above approach 
using System;
 
class GFG{
 
// Function to find minimum number
// of moves to obtained B from A
static void convertBfromA(int a, int b)
{
     
    // Stores the minimum
    // number of moves
    int moves = 0;
 
    // Absolute difference
    int x = Math.Abs(a - b);
 
    // K is in range [0, 10]
    for(int i = 10; i > 0; i--)
    {
        moves += x / i;
        x = x % i;
    }
 
    // Print the required moves
    Console.Write(moves + " ");
}
 
// Driver Code
public static void Main ()
{
    int A = 188, B = 4;
 
    convertBfromA(A, B);
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to find minimum number
// of moves to obtained B from A
function convertBfromA(a, b)
{
      
    // Stores the minimum
    // number of moves
    let moves = 0;
  
    // Absolute difference
    let x = Math.abs(a - b);
  
    // K is in range [0, 10]
    for(let i = 10; i > 0; i--)
    {
        moves += Math.floor(x / i);
        x = x % i;
    }
  
    // Print the required moves
    document.write(moves + " ");
}
 
// Driver Code
 
    let A = 188, B = 4;
  
    convertBfromA(A, B);
                 
</script>


Output: 

19

 

Time Complexity: O(K), where K is in the range [0, 10]
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments