Given a range [L, R] and two positive integers N and M. The task is to count the numbers in the range containing only non-zero digits whose sum of digits is equal to N and the number is divisible by M.
Examples:
Input: L = 1, R = 100, N = 8, M = 2
Output: 4
Only 8, 26, 44 and 62 are valid numbersInput: L = 1, R = 200, N = 4, M = 11
Output: 2
Only 22 and 121 are valid numbers
Prerequisites : Digit DP
Approach: Firstly, if we are able to count the required numbers up to R i.e. in the range [0, R], we can easily reach our answer in the range [L, R] by solving for from zero to R and then subtracting the answer we get after solving for from zero to L – 1. Now, we need to define the DP states.
DP States:
- Since we can consider our number as a sequence of digits, one state is the position at which we are currently in. This position can have values from 0 to 18 if we are dealing with numbers up to 1018. In each recursive call, we try to build the sequence from left to right by placing a digit from 0 to 9.
- Second state is the sum of the digits we have placed so far.
- Third state is the remainder which defines the modulus of the number we have made so far modulo M.
- Another state is the boolean variable tight which tells the number we are trying to build has already become smaller than R so that in the upcoming recursive calls we can place any digit from 0 to 9. If the number has not become smaller, the maximum limit of digit we can place is digit at the current position in R.
For the number to have only non-zero digits, we maintain a variable nonz whose value if 1 tells the first digit in the number we have placed is a non-zero digit and thus, now we can’t place any zero digit in upcoming calls. Otherwise, we can place a zero digit as a leading zero so as to make number of digits in current number smaller than number of digits in upper limit.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; const int M = 20; // states - position, sum, rem, tight // sum can have values upto 162, if we // are dealing with numbers upto 10^18 // when all 18 digits are 9, then sum // is 18 * 9 = 162 int dp[M][165][M][2]; // n is the sum of digits and number should // be divisible by m int n, m; // Function to return the count of // required numbers from 0 to num int count( int pos, int sum, int rem, int tight, int nonz, vector< int > num) { // Last position if (pos == num.size()) { if (rem == 0 && sum == n) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][sum][rem][tight] != -1) return dp[pos][sum][rem][tight]; int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight ? 9 : num[pos]); for ( int d = 0; d <= limit; d++) { // If the current digit is zero // and nonz is 1, we can't place it if (d == 0 && nonz) continue ; int currSum = sum + d; int currRem = (rem * 10 + d) % m; int currF = tight || (d < num[pos]); ans += count(pos + 1, currSum, currRem, currF, nonz || d, num); } return dp[pos][sum][rem][tight] = ans; } // Function to convert x into its digit vector // and uses count() function to return the // required count int solve( int x) { vector< int > num; while (x) { num.push_back(x % 10); x /= 10; } reverse(num.begin(), num.end()); // Initialize dp memset (dp, -1, sizeof (dp)); return count(0, 0, 0, 0, 0, num); } // Driver code int main() { int L = 1, R = 100; n = 8, m = 2; cout << solve(R) - solve(L); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static int M = 20 ; // states - position, sum, rem, tight // sum can have values upto 162, if we // are dealing with numbers upto 10^18 // when all 18 digits are 9, then sum // is 18 * 9 = 162 static int dp[][][][] = new int [M][ 165 ][M][ 2 ]; // n is the sum of digits and number should // be divisible by m static int n, m; // Function to return the count of // required numbers from 0 to num static int count( int pos, int sum, int rem, int tight, int nonz, Vector<Integer> num) { // Last position if (pos == num.size()) { if (rem == 0 && sum == n) return 1 ; return 0 ; } // If this result is already computed // simply return it if (dp[pos][sum][rem][tight] != - 1 ) return dp[pos][sum][rem][tight]; int ans = 0 ; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight != 0 ? 9 : num.get(pos)); for ( int d = 0 ; d <= limit; d++) { // If the current digit is zero // and nonz is 1, we can't place it if (d == 0 && nonz != 0 ) continue ; int currSum = sum + d; int currRem = (rem * 10 + d) % m; int currF = (tight != 0 || (d < num.get(pos))) ? 1 : 0 ; ans += count(pos + 1 , currSum, currRem, currF, (nonz != 0 || d != 0 ) ? 1 : 0 , num); } return dp[pos][sum][rem][tight] = ans; } // Function to convert x into its digit vector // and uses count() function to return the // required count static int solve( int x) { Vector<Integer> num = new Vector<Integer>(); while (x != 0 ) { num.add(x % 10 ); x /= 10 ; } Collections.reverse(num); // Initialize dp for ( int i = 0 ; i < M; i++) for ( int j = 0 ; j < 165 ; j++) for ( int k = 0 ; k < M; k++) for ( int l = 0 ; l < 2 ; l++) dp[i][j][k][l]=- 1 ; return count( 0 , 0 , 0 , 0 , 0 , num); } // Driver code public static void main(String args[]) { int L = 1 , R = 100 ; n = 8 ; m = 2 ; System.out.print( solve(R) - solve(L)); } } // This code is contributed by Arnab Kundu |
Python3
# Python3 implementation of the approach # Function to return the count of # required numbers from 0 to num def count(pos, Sum , rem, tight, nonz, num): # Last position if pos = = len (num): if rem = = 0 and Sum = = n: return 1 return 0 # If this result is already computed # simply return it if dp[pos][ Sum ][rem][tight] ! = - 1 : return dp[pos][ Sum ][rem][tight] ans = 0 # Maximum limit upto which we can place # digit. If tight is 1, means number has # already become smaller so we can place # any digit, otherwise num[pos] if tight: limit = 9 else : limit = num[pos] for d in range ( 0 , limit + 1 ): # If the current digit is zero # and nonz is 1, we can't place it if d = = 0 and nonz: continue currSum = Sum + d currRem = (rem * 10 + d) % m currF = int (tight or (d < num[pos])) ans + = count(pos + 1 , currSum, currRem, currF, nonz or d, num) dp[pos][ Sum ][rem][tight] = ans return ans # Function to convert x into its digit # vector and uses count() function to # return the required count def solve(x): num = [] global dp while x > 0 : num.append(x % 10 ) x / / = 10 num.reverse() # Initialize dp dp = [[[[ - 1 , - 1 ] for i in range (M)] for j in range ( 165 )] for k in range (M)] return count( 0 , 0 , 0 , 0 , 0 , num) # Driver code if __name__ = = "__main__" : L, R = 1 , 100 # n is the sum of digits and number # should be divisible by m n, m, M = 8 , 2 , 20 # States - position, sum, rem, tight # sum can have values upto 162, if we # are dealing with numbers upto 10^18 # when all 18 digits are 9, then sum # is 18 * 9 = 162 dp = [] print (solve(R) - solve(L)) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int M = 20; // states - position, sum, rem, tight // sum can have values upto 162, if we // are dealing with numbers upto 10^18 // when all 18 digits are 9, then sum // is 18 * 9 = 162 static int [,,,]dp = new int [M, 165, M, 2]; // n is the sum of digits and number should // be divisible by m static int n, m; // Function to return the count of // required numbers from 0 to num static int count( int pos, int sum, int rem, int tight, int nonz, List< int > num) { // Last position if (pos == num.Count) { if (rem == 0 && sum == n) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos,sum,rem,tight] != -1) return dp[pos,sum,rem,tight]; int ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] int limit = (tight != 0 ? 9 : num[pos]); for ( int d = 0; d <= limit; d++) { // If the current digit is zero // and nonz is 1, we can't place it if (d == 0 && nonz != 0) continue ; int currSum = sum + d; int currRem = (rem * 10 + d) % m; int currF = (tight != 0 || (d < num[pos])) ? 1 : 0; ans += count(pos + 1, currSum, currRem, currF, (nonz != 0 || d != 0) ? 1 : 0, num); } return dp[pos, sum, rem, tight] = ans; } // Function to convert x into its digit vector // and uses count() function to return the // required count static int solve( int x) { List< int > num = new List< int >(); while (x != 0) { num.Add(x % 10); x /= 10; } num.Reverse(); // Initialize dp for ( int i = 0; i < M; i++) for ( int j = 0; j < 165; j++) for ( int k = 0; k < M; k++) for ( int l = 0; l < 2; l++) dp[i, j, k, l] = -1; return count(0, 0, 0, 0, 0, num); } // Driver code public static void Main(String []args) { int L = 1, R = 100; n = 8; m = 2; Console.Write( solve(R) - solve(L)); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation of the approach var M = 20; // states - position, sum, rem, tight // sum can have values upto 162, if we // are dealing with numbers upto 10^18 // when all 18 digits are 9, then sum // is 18 * 9 = 162 var dp = Array.from(Array(M), ()=>Array(165)); // n is the sum of digits and number should // be divisible by m var n, m; // Function to return the count of // required numbers from 0 to num function count( pos, sum, rem, tight, nonz, num) { // Last position if (pos == num.length) { if (rem == 0 && sum == n) return 1; return 0; } // If this result is already computed // simply return it if (dp[pos][sum][rem][tight] != -1) return dp[pos][sum][rem][tight]; var ans = 0; // Maximum limit upto which we can place // digit. If tight is 1, means number has // already become smaller so we can place // any digit, otherwise num[pos] var limit = (tight ? 9 : num[pos]); for ( var d = 0; d <= limit; d++) { // If the current digit is zero // and nonz is 1, we can't place it if (d == 0 && nonz) continue ; var currSum = sum + d; var currRem = (rem * 10 + d) % m; var currF = (tight != 0 || (d < num[pos])) ? 1 : 0; ans += count(pos + 1, currSum, currRem, currF, (nonz != 0 || d != 0) ? 1 : 0, num); } dp[pos][sum][rem][tight] = ans; return ans; } // Function to convert x into its digit vector // and uses count() function to return the // required count function solve(x) { var num = []; while (x) { num.push(x % 10); x = parseInt(x/10); } num.reverse(); // Initialize dp for ( var i =0; i<M; i++) for ( var j =0; j<165; j++) dp[i][j] = Array.from(Array(M), ()=>Array(2).fill(-1)); return count(0, 0, 0, 0, 0, num); } // Driver code var L = 1, R = 100; n = 8, m = 2; document.write( solve(R) - solve(L)); </script> |
4
Time Complexity: O(M*M)
Auxiliary Space: O(M*M)
Short Implementation :
C++
#include <iostream> #include <numeric> #include <sstream> #include <string> #include <vector> int main() { int l = 1, r = 100, n = 8, m = 2; std::vector< int > output; for ( int x = l; x <= r; x++) { int sum = 0; std::string str = std::to_string(x); for ( char c : str) { sum += c - '0' ; } if (sum == n && x % m == 0 && str.find( "0" ) == std::string::npos) { output.push_back(x); } } std::cout << output.size() << std::endl; return 0; } // this code is contributed by dany |
Python3
# User Input l, r, n, m = 1 , 100 , 8 , 2 # Initialize Result output = [] # Traverse through all numbers for x in range (l, r + 1 ): # Check for all conditions in every number if sum ([ int (k) for k in str (x)]) = = n and x % m = = 0 and '0' not in str (x): # Check conditions output.append(x) print ( len (output)) # This code is contributed by mailprakashindia |
Java
import java.util.ArrayList; import java.util.List; public class Main { public static void main(String[] args) { int l = 1 , r = 100 , n = 8 , m = 2 ; List<Integer> output = new ArrayList<>(); // Traverse through all numbers for ( int x = l; x <= r; x++) { // Check for all conditions in every number if (String.valueOf(x).chars().map(Character::getNumericValue).sum() == n && x % m == 0 && !String.valueOf(x).contains( "0" )) { output.add(x); } } System.out.println(output.size()); } } // this code is contributed by devendrasalunke |
C#
using System; using System.Collections.Generic; using System.Linq; class MainClass { public static void Main ( string [] args) { int l = 1, r = 100, n = 8, m = 2; List< int > output = new List< int >(); // Traverse through all numbers for ( int x = l; x <= r; x++) { // Check for all conditions in every number if (x.ToString().ToCharArray().Select(c => ( int )Char.GetNumericValue(c)).Sum() == n && x % m == 0 && !x.ToString().Contains( "0" )) { output.Add(x); } } Console.WriteLine(output.Count); } } |
Javascript
// User Input let l = 1, r = 100, n = 8, m = 2; // Initialize Result let output = []; // Traverse through all numbers for (let x = l; x <= r; x++) { // Check for all conditions in every number if (x.toString().split( '' ).map(Number).reduce((a,b) => a + b) === n && x % m === 0 && !x.toString().includes( '0' )) { // Check conditions output.push(x); } } console.log(output.length); |
4
Time complexity of this solution would be O(n * k), where n is the number of elements in the given range (r-l) and k = no. of digit required to represent a number in decimal format. We traverse through all the elements in the given range so O(n) and for checking all the conditions we need O(k) for every possible value, as here we are using stl find() function which need O(k) time.
Auxiliary Space complexity of this solution would be O(1). We do not use any extra space for this solution.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!