Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMaximum decimal value path in a binary matrix

Maximum decimal value path in a binary matrix

Given binary square matrix [n*n]. Find maximum integer value in a path from top left to bottom right. We compute integer value using bits of traversed path. We start at index [0,0] and end at index [n-1][n-1]. from index [i, j], we can move [i, j+1] or [i+1, j]. 

Examples: 

Input : mat[][] = {{1, 1, 0, 1},
                   {0, 1, 1, 0},
                   {1, 0, 0, 1},
                   {1, 0, 1, 1}}
Output : 111
Explanation : 
Path :   (0,0) -> (0,1) -> (1,1) -> (1,2) ->
         (2,2) -> (3,2) ->(3,3)  
Decimal value : 1*(2^0) + 1*(2^1) + 1*(2^2) + 1*(2^3) + 
                0*(2^4) + 1*(2^5) + 1*(2^6) = 111

The above problem can be recursively defined as below:  

// p indicates power of 2, initially  p = i = j = 0
MaxDecimalValue(mat, i, j, p) 

   // If i or j is our of boundary
   If i >= n || j >= n  
      return 0

   // Compute rest of matrix find maximum decimal value 
   result  max(MaxDecimalValue(mat, i, j+1, p+1), 
               MaxDecimalValue(mat, i+1, j, p+1))

   If mat[i][j] == 1  
      return power(2, p) + result
   Else
      return result 

Below is the implementation of above recursive algorithm. 

C++




   
// C++ program to find maximum decimal value path in
// binary matrix
#include<bits/stdc++.h>
using namespace std;
 
#define N 4
 
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
long long int maxDecimalValue(int mat[][N], int i, int j,
                                                   int p)
{
    // Out of matrix boundary
    if (i >= N || j >= N )
        return 0;
 
    int result = max(maxDecimalValue(mat, i, j+1, p+1),
                     maxDecimalValue(mat, i+1, j, p+1));
 
    // If current matrix value is 1 then return result +
    // power(2, p) else result
    if (mat[i][j] == 1)
        return pow(2, p) + result;
    else
        return result;
}
 
//Driver program
int main()
{
    int mat[][4] = {{ 1 ,1 ,0 ,1 },
        { 0 ,1 ,1 ,0 },
        { 1 ,0 ,0 ,1 },
        { 1 ,0 ,1 ,1 },
    };
 
    cout << maxDecimalValue(mat, 0, 0, 0) << endl;
    return 0;
}


Java




// Java program to find maximum decimal value path in
// binary matrix
 
class GFG {
 
    static final int N = 4;
 
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
    static int maxDecimalValue(int mat[][], int i, int j,
            int p) {
        // Out of matrix boundary
        if (i >= N || j >= N) {
            return 0;
        }
 
        int result = Math.max(maxDecimalValue(mat, i, j + 1, p + 1),
                maxDecimalValue(mat, i + 1, j, p + 1));
 
        // If current matrix value is 1 then return result +
        // power(2, p) else result
        if (mat[i][j] == 1) {
            return (int) (Math.pow(2, p) + result);
        } else {
            return result;
        }
    }
 
// Driver program
    public static void main(String[] args) {
        int mat[][] = {{1, 1, 0, 1},
        {0, 1, 1, 0},
        {1, 0, 0, 1},
        {1, 0, 1, 1},};
 
        System.out.println(maxDecimalValue(mat, 0, 0, 0));
    }
}
//this code contributed by Rajput-Ji


Python3




# Python3 program to find maximum decimal
# value path in binary matrix
N =4
 
# Returns maximum decimal value in binary
# matrix. Here p indicate power of 2
def maxDecimalValue(mat, i, j, p):
 
    # Out of matrix boundary
    if i >= N or j >= N:
        return 0
         
    result = max(
        maxDecimalValue(mat, i, j+1, p+1),
        maxDecimalValue(mat, i+1, j, p+1))
 
    # If current matrix value is 1 then
    # return result + power(2, p) else
    # result
    if mat[i][j] == 1:
        return pow(2, p) + result
    else:
        return result
 
 
# Driver Program
mat = [ [1, 1, 0, 1],
        [0, 1, 1, 0],
        [1, 0, 0, 1],
        [1, 0, 1, 1] ]
 
print(maxDecimalValue(mat, 0, 0, 0))
 
# This code is contributed by Shrikant13.


C#




// C# program to find maximum decimal value path in
// binary matrix
 
using System;
class GFG {
 
    static int N = 4;
 
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
    static int maxDecimalValue(int[,] mat, int i,
                                int j,int p)
    {
        // Out of matrix boundary
        if (i >= N || j >= N) {
            return 0;
        }
 
        int result = Math.Max(maxDecimalValue(mat, i, j + 1, p + 1),
                    maxDecimalValue(mat, i + 1, j, p + 1));
 
        // If current matrix value is 1 then return result +
        // power(2, p) else result
        if (mat[i,j] == 1)
        {
            return (int) (Math.Pow(2, p) + result);
        } else
        {
            return result;
        }
    }
 
// Driver program
    public static void Main() {
        int[,] mat = {{1, 1, 0, 1},
        {0, 1, 1, 0},
        {1, 0, 0, 1},
        {1, 0, 1, 1},};
 
        Console.Write(maxDecimalValue(mat, 0, 0, 0));
    }
}
// This code is contributed by Ita_c.


PHP




<?php
// PHP program to find maximum
// decimal value path in binary
// matrix
 
// Returns maximum decimal value
// in binary matrix. Here p
// indicate power of 2
function maxDecimalValue($mat, $i,
                          $j, $p)
{
    $N=4;
     
    // Out of matrix boundary
    if ($i >= $N || $j >= $N )
        return 0;
 
    $result = max(maxDecimalValue($mat, $i,
                            $j + 1, $p + 1),
                  maxDecimalValue($mat, $i + 1,
                                $j, $p + 1));
 
    // If current matrix value
    // is 1 then return result +
    // power(2, p) else result
    if ($mat[$i][$j] == 1)
        return pow(2, $p) + $result;
    else
        return $result;
}
 
    // Driver Code
    $mat = array(array(1 ,1 ,0 ,1),
                 array(0 ,1 ,1 ,0),
                 array(1 ,0 ,0 ,1),
                 array(1 ,0 ,1 ,1));
 
    echo maxDecimalValue($mat, 0, 0, 0) ;
     
// This code is contributed by nitin mittal.
?>


Javascript




<script>
 
// JavaScript program to find maximum
// decimal value path in binary matrix
let N = 4;
   
// Returns maximum decimal value in
// binary matrix.Here p indicate power of 2
function maxDecimalValue(mat, i, j, p)
{
     
    // Out of matrix boundary
    if (i >= N || j >= N)
    {
        return 0;
    }
 
    let result = Math.max(maxDecimalValue(mat, i, j + 1,
                                                  p + 1),
                          maxDecimalValue(mat, i + 1, j,
                                               p + 1));
                                                
    // If current matrix value is 1 then
    // return result + power(2, p) else result
    if (mat[i][j] == 1)
    {
        return (Math.pow(2, p) + result);
    }
    else
    {
        return result;
    }
}
 
// Driver Code
let mat = [ [ 1, 1, 0, 1 ],
            [ 0, 1, 1, 0 ],
            [ 1, 0, 0, 1 ],
            [ 1, 0, 1, 1 ] ];
 
document.write(maxDecimalValue(mat, 0, 0, 0));
 
// This code is contributed by souravghosh0416            
                          
</script>


Output: 

111

The time complexity of above recursive solution is exponential

Space Complexity:O(1),since no extra space required.

 Here matrix [3][3]               
            (2 2)
          /        \
     (1 2)          (2 1)
    /     \        /     \
 (0 2)   (1 1)   (1 1)   (2 1)
 /  \    /   \    /  \    / \ 
.    .  .    .    .   .   .  .
.    .  .    .    .   .   .  . and so no 

If we see recursion tree of above recursive solution, we can observe overlapping sub-problems. Since the problem has overlapping subproblems, we can solve it efficiently using Dynamic Programming. Below is Dynamic Programming based solution. 

Below is the implementation of above problem using Dynamic Programming  

C++




// C++ program to find Maximum decimal value Path in
// Binary matrix
#include<bits/stdc++.h>
using namespace std;
#define N 4
 
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
long long int MaximumDecimalValue(int mat[][N], int n)
{
    int dp[n][n];
    memset(dp, 0, sizeof(dp));
    if (mat[0][0] == 1)
        dp[0][0] = 1 ; // 1*(2^0)
 
    // Compute binary stream of first row of matrix
    // and store result in dp[0][i]
    for (int i=1; i<n; i++)
    {
        // indicate 1*(2^i) + result of previous
        if (mat[0][i] == 1)
            dp[0][i] = dp[0][i-1] + pow(2, i);
 
        // indicate 0*(2^i) + result of previous
        else
            dp[0][i] = dp[0][i-1];
    }
 
    // Compute binary stream of first column of matrix
    // and store result in dp[i][0]
    for (int i = 1 ; i <n ; i++ )
    {
        // indicate 1*(2^i) + result of previous
        if (mat[i][0] == 1)
            dp[i][0] = dp[i-1][0] + pow(2, i);
 
        // indicate 0*(2^i) + result of previous
        else
            dp[i][0] = dp[i-1][0];
    }
 
    // Traversal rest Binary matrix and Compute maximum
    // decimal value
    for (int i=1 ; i < n ; i++ )
    {
        for (int j=1 ; j < n ; j++ )
        {
            // Here (i+j) indicate the current power of
            // 2 in path that is 2^(i+j)
            if (mat[i][j] == 1)
                dp[i][j] = max(dp[i][j-1], dp[i-1][j]) +
                                             pow(2, i+j);
            else
                dp[i][j] = max(dp[i][j-1], dp[i-1][j]);
        }
     }
 
    // Return maximum decimal value in binary matrix
    return dp[n-1][n-1];
}
 
// Driver program
int main()
{
    int mat[][4] = {{ 1 ,1 ,0 ,1 },
        { 0 ,1 ,1 ,0 },
        { 1 ,0 ,0 ,1 },
        { 1 ,0 ,1 ,1 },
    };
    cout << MaximumDecimalValue(mat, 4) << endl;
    return 0;
}


Java




// Java program to find Maximum decimal value Path in
// Binary matrix
public class GFG {
 
    final static int N = 4;
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
 
    static int MaximumDecimalValue(int mat[][], int n) {
        int dp[][] = new int[n][n];
        if (mat[0][0] == 1) {
            dp[0][0] = 1; // 1*(2^0)
        }
        // Compute binary stream of first row of matrix
        // and store result in dp[0][i]
        for (int i = 1; i < n; i++) {
            // indicate 1*(2^i) + result of previous
            if (mat[0][i] == 1) {
                dp[0][i] = (int) (dp[0][i - 1] + Math.pow(2, i));
            } // indicate 0*(2^i) + result of previous
            else {
                dp[0][i] = dp[0][i - 1];
            }
        }
 
        // Compute binary stream of first column of matrix
        // and store result in dp[i][0]
        for (int i = 1; i < n; i++) {
            // indicate 1*(2^i) + result of previous
            if (mat[i][0] == 1) {
                dp[i][0] = (int) (dp[i - 1][0] + Math.pow(2, i));
            } // indicate 0*(2^i) + result of previous
            else {
                dp[i][0] = dp[i - 1][0];
            }
        }
 
        // Traversal rest Binary matrix and Compute maximum
        // decimal value
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < n; j++) {
                // Here (i+j) indicate the current power of
                // 2 in path that is 2^(i+j)
                if (mat[i][j] == 1) {
                    dp[i][j] = (int) (Math.max(dp[i][j - 1], dp[i - 1][j])
                            + Math.pow(2, i + j));
                } else {
                    dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
                }
            }
        }
 
        // Return maximum decimal value in binary matrix
        return dp[n - 1][n - 1];
    }
 
// Driver program
    public static void main(String[] args) {
 
        int mat[][] = {{1, 1, 0, 1},
        {0, 1, 1, 0},
        {1, 0, 0, 1},
        {1, 0, 1, 1},};
        System.out.println(MaximumDecimalValue(mat, 4));
    }
}
/*This code is contributed by Rajput-Ji*/


Python3




# Python3 program to find Maximum decimal
# value Path in
# Binary matrix
 
N=4
 
# Returns maximum decimal value in binary matrix.
# Here p indicate power of 2
def MaximumDecimalValue(mat, n):
    dp=[[0 for i in range(n)] for i in range(n)]
    if (mat[0][0] == 1):
        dp[0][0] = 1     # 1*(2^0)
         
    # Compute binary stream of first row of matrix
    # and store result in dp[0][i]
    for i in range(1,n):
         
        # indicate 1*(2^i) + result of previous
        if (mat[0][i] == 1):
            dp[0][i] = dp[0][i-1] + 2**i
             
        # indicate 0*(2^i) + result of previous
        else:
            dp[0][i] = dp[0][i-1]
             
    # Compute binary stream of first column of matrix
    # and store result in dp[i][0]
    for i in range(1,n):
         
        # indicate 1*(2^i) + result of previous
        if (mat[i][0] == 1):
            dp[i][0] = dp[i-1][0] + 2**i
             
        # indicate 0*(2^i) + result of previous
    else:
        dp[i][0] = dp[i-1][0]
         
    # Traversal rest Binary matrix and Compute maximum
    # decimal value
    for i in range(1,n):
        for j in range(1,n):
             
            # Here (i+j) indicate the current power of
            # 2 in path that is 2^(i+j)
            if (mat[i][j] == 1):
                dp[i][j] = max(dp[i][j-1], dp[i-1][j])+(2**(i+j))
            else:
                dp[i][j] = max(dp[i][j-1], dp[i-1][j])
                 
    # Return maximum decimal value in binary matrix
    return dp[n-1][n-1]
 
# Driver program
if __name__=='__main__':
     
    mat = [[ 1 ,1 ,0 ,1 ],
          [ 0 ,1 ,1 ,0 ],
          [ 1 ,0 ,0 ,1 ],
          [ 1 ,0 ,1 ,1 ]]
           
    print (MaximumDecimalValue(mat, 4))
 
#this code is contributed by sahilshelangia


C#




// C# program to find Maximum decimal value Path in
// Binary matrix
using System;
public class GFG {
  
    readonly static int N = 4;
// Returns maximum decimal value in binary matrix.
// Here p indicate power of 2
  
    static int MaximumDecimalValue(int [,]mat, int n) {
        int [,]dp = new int[n,n];
        if (mat[0,0] == 1) {
            dp[0,0] = 1; // 1*(2^0)
        }
        // Compute binary stream of first row of matrix
        // and store result in dp[0,i]
        for (int i = 1; i < n; i++) {
            // indicate 1*(2^i) + result of previous
            if (mat[0,i] == 1) {
                dp[0,i] = (int) (dp[0,i - 1] + Math.Pow(2, i));
            } // indicate 0*(2^i) + result of previous
            else {
                dp[0,i] = dp[0,i - 1];
            }
        }
  
        // Compute binary stream of first column of matrix
        // and store result in dp[i,0]
        for (int i = 1; i < n; i++) {
            // indicate 1*(2^i) + result of previous
            if (mat[i,0] == 1) {
                dp[i,0] = (int) (dp[i - 1,0] + Math.Pow(2, i));
            } // indicate 0*(2^i) + result of previous
            else {
                dp[i,0] = dp[i - 1,0];
            }
        }
  
        // Traversal rest Binary matrix and Compute maximum
        // decimal value
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < n; j++) {
                // Here (i+j) indicate the current power of
                // 2 in path that is 2^(i+j)
                if (mat[i,j] == 1) {
                    dp[i,j] = (int) (Math.Max(dp[i,j - 1], dp[i - 1,j])
                            + Math.Pow(2, i + j));
                } else {
                    dp[i,j] = Math.Max(dp[i,j - 1], dp[i - 1,j]);
                }
            }
        }
  
        // Return maximum decimal value in binary matrix
        return dp[n - 1,n - 1];
    }
  
// Driver program
    public static void Main() {
  
        int [,]mat = {{1, 1, 0, 1},
        {0, 1, 1, 0},
        {1, 0, 0, 1},
        {1, 0, 1, 1},};
        Console.Write(MaximumDecimalValue(mat, 4));
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript program to find Maximum decimal value Path in
// Binary matrix
     
    let N = 4;
    // Returns maximum decimal value in binary matrix.
    // Here p indicate power of 2
    function MaximumDecimalValue(mat,n)
    {
        let dp=new Array(n);
        for(let i = 0; i < n; i++)
        {
            dp[i] = new Array(n);
            for(let j = 0; j < n; j++)
            {
                dp[i][j] = 0;
            }
        }
         
        if (mat[0][0] == 1) {
            dp[0][0] = 1; // 1*(2^0)
        }
        // Compute binary stream of first row of matrix
        // and store result in dp[0][i]
        for (let i = 1; i < n; i++)
        {
         
            // indicate 1*(2^i) + result of previous
            if (mat[0][i] == 1)
            {
                dp[0][i] = dp[0][i - 1] + Math.pow(2, i);
            }
             
            // indicate 0*(2^i) + result of previous
            else
            {
                dp[0][i] = dp[0][i - 1];
            }
        }
  
        // Compute binary stream of first column of matrix
        // and store result in dp[i][0]
        for (let i = 1; i < n; i++)
        {
         
            // indicate 1*(2^i) + result of previous
            if (mat[i][0] == 1)
            {
                dp[i][0] = Math.floor(dp[i - 1][0] + Math.pow(2, i));
            }
             
            // indicate 0*(2^i) + result of previous
            else
            {
                dp[i][0] = dp[i - 1][0];
            }
        }
  
        // Traversal rest Binary matrix and Compute maximum
        // decimal value
        for (let i = 1; i < n; i++)
        {
            for (let j = 1; j < n; j++)
            {
             
                // Here (i+j) indicate the current power of
                // 2 in path that is 2^(i+j)
                if (mat[i][j] == 1)
                {
                    dp[i][j] = Math.floor(Math.max(dp[i][j - 1], dp[i - 1][j])
                            + Math.pow(2, i + j));
                }
                else
                {
                    dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
                }
            }
        }
  
        // Return maximum decimal value in binary matrix
        return dp[n - 1][n - 1];
    }
     
    // Driver program
    let mat = [[ 1 ,1 ,0 ,1 ],
          [ 0 ,1 ,1 ,0 ],
          [ 1 ,0 ,0 ,1 ],
          [ 1 ,0 ,1 ,1 ]];
    document.write(MaximumDecimalValue(mat, 4))
     
    // This code is contributed by rag2127.
</script>


Output: 

111

Time Complexity : O(n2
Auxiliary space : O(n2)

This article is contributed by Nishant_Singh (Pintu). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments