Given an integer, P denoting the number of chocolates and an array a[] where ai denotes the type of ith chocolate. There are N people who want to eat chocolate every day. Find the maximum number of consecutive days for which N people can eat chocolates considering the following conditions:
- Each of the N people must eat exactly one chocolate on a particular day.
- A single person can eat chocolate of the same type only for all days.
Examples:
Input: N = 4, P = 10, arr[] = {1, 5, 2, 1, 1, 1, 2, 5, 7, 2}
Output: 2
Explanation: Chocolates can be assigned in the following way:
Person 1: Type 1
Person 2: Type 1
Person 3: Type 2
Person 4: Type 5
In this way, there are sufficient chocolates for each person to eat one chocolate for two consecutive days. No other possible distribution of chocolates can make the people eat the chocolates for more than 2 days.Input: N = 3, P = 10, arr[] = {1, 2, 2, 1, 1, 3, 3, 3, 2, 4}
Output: 3
Explanation: Chocolates can be distributed in the following way:
Person 1: Type 1
Person 2: Type 2
Person 3: Type 3
In this way, all the 3 people can eat their respective assigned type of chocolates for three days.
Approach: Follow the steps below to solve the problem:
- The minimum number of days for which it is possible to distribute the chocolates is 0 and the maximum number is P.
- So, for each number X in this range, check if it is possible to distribute chocolates to each person for X days.
- For all such Xs, find the maximum.
- Now, using Binary Search check for all the numbers in the range 0 to P.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Stores the frequency of // each type of chocolate map< int , int > mp; int N, P; // Function to check if chocolates // can be eaten for 'mid' no. of days bool helper( int mid) { int cnt = 0; for ( auto i : mp) { int temp = i.second; while (temp >= mid) { temp -= mid; cnt++; } } // If cnt exceeds N, // return true return cnt >= N; } // Function to find the maximum // number of days for which // chocolates can be eaten int findMaximumDays( int arr[]) { // Store the frequency // of each type of chocolate for ( int i = 0; i < P; i++) { mp[arr[i]]++; } // Initialize start and end // with 0 and P respectively int start = 0, end = P, ans = 0; while (start <= end) { // Calculate mid int mid = start + ((end - start) / 2); // Check if chocolates can be // distributed for mid days if (mid != 0 and helper(mid)) { ans = mid; // Check if chocolates can // be distributed for more // than mid consecutive days start = mid + 1; } else if (mid == 0) { start = mid + 1; } else { end = mid - 1; } } return ans; } // Driver code int main() { N = 3, P = 10; int arr[] = { 1, 2, 2, 1, 1, 3, 3, 3, 2, 4 }; // Function call cout << findMaximumDays(arr); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG{ // Stores the frequency of // each type of chocolate static HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>(); static int N, P; // Function to check if chocolates // can be eaten for 'mid' no. of days static boolean helper( int mid) { int cnt = 0 ; for (Map.Entry<Integer, Integer> i : mp.entrySet()) { int temp = i.getValue(); while (temp >= mid) { temp -= mid; cnt++; } } // If cnt exceeds N, // return true return cnt >= N; } // Function to find the maximum // number of days for which // chocolates can be eaten static int findMaximumDays( int arr[]) { // Store the frequency // of each type of chocolate for ( int i = 0 ; i < P; i++) { if (mp.containsKey(arr[i])) { mp.put(arr[i], mp.get(arr[i]) + 1 ); } else { mp.put(arr[i], 1 ); } } // Initialize start and end // with 0 and P respectively int start = 0 , end = P, ans = 0 ; while (start <= end) { // Calculate mid int mid = start + ((end - start) / 2 ); // Check if chocolates can be // distributed for mid days if (mid != 0 && helper(mid)) { ans = mid; // Check if chocolates can // be distributed for more // than mid consecutive days start = mid + 1 ; } else if (mid == 0 ) { start = mid + 1 ; } else { end = mid - 1 ; } } return ans; } // Driver code public static void main(String[] args) { N = 3 ; P = 10 ; int arr[] = { 1 , 2 , 2 , 1 , 1 , 3 , 3 , 3 , 2 , 4 }; // Function call System.out.print(findMaximumDays(arr)); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program to implement # the above approach # Stores the frequency of # each type of chocolate mp = {} N, P = 0 , 0 # Function to check if chocolates # can be eaten for 'mid' no. of days def helper(mid): cnt = 0 ; for i in mp: temp = mp[i] while (temp > = mid): temp - = mid cnt + = 1 # If cnt exceeds N, # return true return cnt > = N # Function to find the maximum # number of days for which # chocolates can be eaten def findMaximumDays(arr): # Store the frequency # of each type of chocolate for i in range (P): mp[arr[i]] = mp.get(arr[i], 0 ) + 1 # Initialize start and end # with 0 and P respectively start = 0 end = P ans = 0 while (start < = end): # Calculate mid mid = start + ((end - start) / / 2 ) # Check if chocolates can be # distributed for mid days if (mid ! = 0 and helper(mid)): ans = mid # Check if chocolates can # be distributed for more # than mid consecutive days start = mid + 1 elif (mid = = 0 ): start = mid + 1 else : end = mid - 1 return ans # Driver code if __name__ = = '__main__' : N = 3 P = 10 arr = [ 1 , 2 , 2 , 1 , 1 , 3 , 3 , 3 , 2 , 4 ] # Function call print (findMaximumDays(arr)) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; using System.Collections.Generic; class GFG{ // Stores the frequency of // each type of chocolate static Dictionary< int , int > mp = new Dictionary< int , int >(); static int N, P; // Function to check if // chocolates can be eaten // for 'mid' no. of days static bool helper( int mid) { int cnt = 0; foreach (KeyValuePair< int , int > i in mp) { int temp = i.Value; while (temp >= mid) { temp -= mid; cnt++; } } // If cnt exceeds N, // return true return cnt >= N; } // Function to find the maximum // number of days for which // chocolates can be eaten static int findMaximumDays( int []arr) { // Store the frequency // of each type of chocolate for ( int i = 0; i < P; i++) { if (mp.ContainsKey(arr[i])) { mp[arr[i]] = mp[arr[i]] + 1; } else { mp.Add(arr[i], 1); } } // Initialize start and end // with 0 and P respectively int start = 0, end = P, ans = 0; while (start <= end) { // Calculate mid int mid = start + ((end - start) / 2); // Check if chocolates can be // distributed for mid days if (mid != 0 && helper(mid)) { ans = mid; // Check if chocolates can // be distributed for more // than mid consecutive days start = mid + 1; } else if (mid == 0) { start = mid + 1; } else { end = mid - 1; } } return ans; } // Driver code public static void Main(String[] args) { N = 3; P = 10; int []arr = {1, 2, 2, 1, 1, 3, 3, 3, 2, 4}; // Function call Console.Write(findMaximumDays(arr)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to implement // the above approach // Stores the frequency of // each type of chocolate var mp = new Map(); var N, P; // Function to check if chocolates // can be eaten for 'mid' no. of days function helper(mid) { var cnt = 0; mp.forEach((value,) => { var temp = value; while (temp >= mid) { temp -= mid; cnt++; } }); // If cnt exceeds N, // return true return cnt >= N; } // Function to find the maximum // number of days for which // chocolates can be eaten function findMaximumDays(arr) { // Store the frequency // of each type of chocolate for ( var i = 0; i < P; i++) { if (mp.has(arr[i])) mp.set(arr[i], mp.get(arr[i])+1) else mp.set(arr[i], 1); } // Initialize start and end // with 0 and P respectively var start = 0, end = P, ans = 0; while (start <= end) { // Calculate mid var mid = start + parseInt((end - start) / 2); // Check if chocolates can be // distributed for mid days if (mid != 0 && helper(mid)) { ans = mid; // Check if chocolates can // be distributed for more // than mid consecutive days start = mid + 1; } else if (mid == 0) { start = mid + 1; } else { end = mid - 1; } } return ans; } // Driver code N = 3, P = 10; var arr = [1, 2, 2, 1, 1, 3, 3, 3, 2, 4 ]; // Function call document.write( findMaximumDays(arr)); </script> |
3
Time Complexity: O(N * log N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!