Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind N distinct integers with sum N

Find N distinct integers with sum N

Given an integer N, the task is to find N distinct integers whose sum is N. If there is more than one combination of the integers, print any one of them.

Examples: 

Input: N = 3 
Output: 1, -1, 3 
Explanation: 
On adding the numbers that is 1 + (-1) + 3 the sum is 3.

Input: N = 4 
Output: 1, -1, 0, 4 
Explanation: 
On adding the numbers that is 1 + (-1) + 0 + (4) the sum is 4. 

Approach: The idea is to print N/2 Symmetric Pairs like (+x, -x) so that the resultant sum will always be 0
Now if integer N is odd, then print N along with these set of integers to make sum of all integers equals to N 
If N is even, print 0 and N along with these set of integers to make sum of all integers equals to N.

Below is the implementation of the above approach:

C++




// C++ for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print distinct N
// numbers whose sum is N
void findNumbers(int N)
{
    // To store how many symmetric
    // pairs needs to be calculated
    int half = N / 2;
 
    // For even N we have to print
    // one less symmetric pair
    if (N % 2 == 0) {
        half--;
    }
 
    // Iterate till [1 n/2] and Print
    // all symmetric pairs(i, -i)
    for (int i = 1; i <= half; i++) {
 
        // Print 2 symmetric numbers
        cout << (-1) * i
             << ", " << i << ", ";
    }
 
    // if N is Odd, then print N
    if (N & 1) {
        cout << N << endl;
    }
 
    // Else print(0, N)
  else {
    cout << 0 << ", "
         << N << endl;
   }
}
 
// Driver Code
int main()
{
    // Given Sum
    int N = 5;
 
    // Function Call
    findNumbers(N);
    return 0;
}


Java




// Java for the above approach
class GFG{
     
// Function to print distinct N
// numbers whose sum is N
public static void findNumbers(int N)
{
     
    // To store how many symmetric
    // pairs needs to be calculated
    int half = N / 2;
     
    // For even N we have to print
    // one less symmetric pair
    if (N % 2 == 0)
    {
        half--;
    }
     
    // Iterate till [1 n/2] and Print
    // all symmetric pairs(i, -i)
    for(int i = 1; i <= half; i++)
    {
 
       // Print 2 symmetric numbers
       System.out.print((-1) * i + ", " +
                               i + ", ");
    }
     
    // if N is Odd, then print N
    int check = N & 1;
    if (check != 0)
    {
        System.out.println(N);
    }
     
    // Else print(0, N)
    else
    {
    System.out.println(0 + ", " + N);
    }
}
 
// Driver code
public static void main(String[] args)
{
         
    // Given sum
    int N = 5;
     
    // Function sall
    findNumbers(N);
}
}
 
// This code is contributed by divyeshrabadiya07       


Python3




# Python3 code for the above approach
 
# Function to print distinct N
# numbers whose sum is N
def findNumbers(N):
 
    # To store how many symmetric
    # pairs needs to be calculated
    half = int(N / 2)
 
    # For even N we have to print
    # one less symmetric pair
    if (N % 2 == 0):
        half = half - 1
 
    # Iterate till [1 n/2] and Print
    # all symmetric pairs(i, -i)
    for i in range(1, half + 1):
 
        # Print 2 symmetric numbers
        print((-1) * i, end = ', ')
        print(i, end = ', ')
 
    # If N is Odd, then print N
    if (N & 1):
        print(N, end = '\n')
 
    # Else print(0, N)
    else:
        print(0, end = ', ')
        print(N, end = '\n')
 
# Driver Code
N = 5
 
# Function Call
findNumbers(N)
 
# This code is contributed by PratikBasu   


C#




// C# for the above approach
using System;
class GFG{
     
// Function to print distinct N
// numbers whose sum is N
public static void findNumbers(int N)
{
     
    // To store how many symmetric
    // pairs needs to be calculated
    int half = N / 2;
     
    // For even N we have to print
    // one less symmetric pair
    if (N % 2 == 0)
    {
        half--;
    }
     
    // Iterate till [1 n/2] and Print
    // all symmetric pairs(i, -i)
    for(int i = 1; i <= half; i++)
    {
 
        // Print 2 symmetric numbers
        Console.Write((-1) * i + ", " +
                             i + ", ");
    }
     
    // if N is Odd, then print N
    int check = N & 1;
    if (check != 0)
    {
        Console.Write(N + "\n");
    }
     
    // Else print(0, N)
    else
    {
    Console.Write(0 + ", " + N + "\n");
    }
}
 
// Driver code
public static void Main(string[] args)
{
         
    // Given sum
    int N = 5;
     
    // Function sall
    findNumbers(N);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// javascript program for the above approach
 
// Function to print distinct N
// numbers whose sum is N
function findNumbers( N)
{
    // To store how many symmetric
    // pairs needs to be calculated
    let half = parseInt(N / 2);
 
    // For even N we have to print
    // one less symmetric pair
    if (N % 2 == 0) {
        half--;
    }
 
    // Iterate till [1 n/2] and Print
    // all symmetric pairs(i, -i)
    for (let i = 1; i <= half; i++) {
 
        // Print 2 symmetric numbers
         document.write( (-1) * i
             + ", " + i + ", ");
    }
 
    // if N is Odd, then print N
    if (N & 1) {
         document.write( N);
    }
 
    // Else print(0, N)
  else {
     document.write(  0 + ", "
         + N +"<br/>");
   }
}
 
// Driver Code
 
    // Given Sum
    let N = 5;
 
    // Function Call
    findNumbers(N);
           
 
    // This code contributed by aashish1995
 
</script>


Output:

-1,1,-2,2,5

Time Complexity: O(N/2) which is asymptotically same as O(N).

Space Complexity: O(1) as no extra space has been used.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments