Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIDivide a number into two unequal even parts

Divide a number into two unequal even parts

Given a positive integer N. The task is to decide whether the integer can be divided into two unequal positive even parts or not.

Examples:

Input: N = 8
Output: YES
Explanation: 8 can be divided into two different even parts i.e. 2 and 6.

Input: N = 5
Output: NO
Explanation: 5 can not be divided into two even parts in any way.

Input:  N = 4
Output: NO
Explanation: 4 can be divided into two even parts, 2 and 2. Since the numbers are equal, the output is NO.

 

Prerequisites: Knowledge of if-else conditional statements.

Brute Force Approach:

We iterate over all possible values of i from 1 to N-1, and check if i and (N-i) are both even and unequal. If we find such a pair of values, we return true, indicating that N can be divided into two unequal even parts. If we don’t find such a pair of values, we return false, indicating that N cannot be divided into two unequal even parts.

Implementation of the above approach:

C++




#include<iostream>
using namespace std;
 
// Function to check if N can be divided
// into two unequal even parts
bool evenParts(int N)
{
    for (int i = 1; i < N; i++) {
        if (i % 2 == 0 && (N-i) % 2 == 0 && i != (N-i)) {
            return true;
        }
    }
    return false;
}
 
// Driver code
int main(){
    int N = 8;
     
    // Function call
    bool ans = evenParts(N);
     
    if(ans)
        cout << "YES" << '\n';
    else
        cout << "NO" << '\n';
     
    return 0;
}


Java




public class EvenParts {
// Function to check if N can be divided
// into two unequal even parts
    public static boolean evenParts(int N) {
        for (int i = 1; i < N; i++) {
            if (i % 2 == 0 && (N - i) % 2 == 0 && i != (N - i)) {
                return true;
            }
        }
        return false;
    }
 
    public static void main(String[] args) {
        int N = 8; // Sample input
        boolean ans = evenParts(N);
        if (ans) {
            System.out.println("YES");
        } else {
            System.out.println("NO");
        }
    }
}


Python3




# Function to check if N can be divided
# into two unequal even parts
def evenParts(N):
    for i in range(1, N):
        if i % 2 == 0 and (N - i) % 2 == 0 and i != (N - i):
            return True
    return False
 
# Driver code
if __name__ == '__main__':
    N = 8
 
    # Function call
    ans = evenParts(N)
 
    if ans:
        print("YES")
    else:
        print("NO")


C#




// C# Implementation
using System;
 
class GFG {
    // Function to check if N can be divided
    // into two unequal even parts
    static bool evenParts(int N) {
        for (int i = 1; i < N; i++) {
            if (i % 2 == 0 && (N - i) % 2 == 0 && i != (N - i)) {
                return true;
            }
        }
        return false;
    }
 
    // Driver code
    static void Main(string[] args) {
        int N = 8;
 
        // Function call
        bool ans = evenParts(N);
 
        if (ans)
            Console.WriteLine("YES");
        else
            Console.WriteLine("NO");
    }
}
 
// This code is contributed by Utkarsh Kumar


Javascript




// Function to check if N can be divided into two unequal even parts
function evenParts(N) {
    for (let i = 1; i < N; i++) {
        if (i % 2 == 0 && (N - i) % 2 == 0 && i != (N - i)) {
            return true;
        }
    }
    return false;
}
 
let N = 8;
 
// Function call
let ans = evenParts(N);
 
if (ans)
    console.log("YES");
else
    console.log("NO");


Output

YES



Time Complexity: O(n)

Space Complexity: O(1)

Approach: The core concept of the problem lies in the following observation:

The sum of any two even numbers is always even. Conversely any even number can be expressed as sum of two even numbers.

But here is two exceptions

  • The number 2 is an exception here. It can only be expressed as the sum of two odd numbers (1 + 1).
  • The number 4 can only be expressed as the sum of equal even numbers (2 + 2).

Hence, it is possible to express N as the sum of two even numbers only if N is even and not equal to 2 or 4. If N is odd, it is impossible to divide it into two even parts. Follow the steps mentioned below:

  1. Check if N = 2 or N = 4.
  2. If yes, then print NO.
  3. Else check if N is even (i.e. a multiple of 2)
  4. If yes, then print YES.
  5. Else, print NO.

Below is the implementation of the above approach.

C++




// C++ code to implement above approach
#include<iostream>
using namespace std;
 
// Function to check if N can be divided
// into two unequal even parts
bool evenParts(int N)
{  
    // Check if N is equal to 2 or 4 
    if(N == 2 || N == 4)
        return false;
 
    // Check if N is even
    if(N % 2 == 0)
        return true;
    else
        return false;
}
  
//Driver code
int main(){
   int N = 8;
     
   // Function call
   bool ans = evenParts(N);
 
   if(ans)
       std::cout << "YES" << '\n';
   else
       std::cout << "NO" << '\n';
  
   return 0;
}


Java




// Java code to implement above approach
import java.util.*;
public class GFG {
 
  // Function to check if N can be divided
  // into two unequal even parts
  static boolean evenParts(int N)
  {  
 
    // Check if N is equal to 2 or 4 
    if(N == 2 || N == 4)
      return false;
 
    // Check if N is even
    if(N % 2 == 0)
      return true;
    else
      return false;
  }
 
  // Driver code
  public static void main(String args[])
  {
    int N = 8;
 
    // Function call
    boolean ans = evenParts(N);
 
    if(ans)
      System.out.println("YES");
    else
      System.out.println("NO");
 
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# Python code for the above approach
 
# Function to check if N can be divided
# into two unequal even parts
def evenParts(N):
 
    # Check if N is equal to 2 or 4
    if (N == 2 or N == 4):
        return False
 
    # Check if N is even
    if (N % 2 == 0):
        return True
    else:
        return False
 
# Driver code
N = 8
 
# Function call
ans = evenParts(N)
if (ans):
    print("YES")
else:
    print("NO")
 
# This code is contributed by Saurabh Jaiswal.


C#




// C# code to implement above approach
using System;
class GFG {
 
  // Function to check if N can be divided
  // into two unequal even parts
  static bool evenParts(int N)
  {  
     
    // Check if N is equal to 2 or 4 
    if(N == 2 || N == 4)
      return false;
 
    // Check if N is even
    if(N % 2 == 0)
      return true;
    else
      return false;
  }
 
  // Driver code
  public static void Main()
  {
    int N = 8;
 
    // Function call
    bool ans = evenParts(N);
 
    if(ans)
      Console.Write("YES" + '\n');
    else
      Console.Write("NO" + '\n');
 
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to check if N can be divided
       // into two unequal even parts
       function evenParts(N)
       {
        
           // Check if N is equal to 2 or 4 
           if (N == 2 || N == 4)
               return false;
 
           // Check if N is even
           if (N % 2 == 0)
               return true;
           else
               return false;
       }
 
       // Driver code
       let N = 8;
 
       // Function call
       let ans = evenParts(N);
       if (ans)
           document.write("YES" + '<br>')
       else
           document.write("NO" + '<br>')
 
 // This code is contributed by Potta Lokesh
   </script>


 
 

Output

YES



 

Time Complexity: O(1)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments