Given a string S of length N, the task is to check if a string can be split into two substrings, say A and B such that B is a substring of A. If not possible, print No. Otherwise, print Yes.
Examples :
Input: S = “abcdab”
Output: Yes
Explanation: Considering the two splits to be A=”abcd” and B=”ab”, B is a substring of A.Input: S = “abcd”
Output: No
Naive Approach: The simplest approach to solve the problem is to split the string S at every possible index, and check if the right substring is a substring of the left substring. If any split satisfies the condition, print “Yes“. Otherwise, print “No“.
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to check if the last character of the string S is present in the remaining string or not. Follow the steps below to solve the problem:
- Store the last character of S in c.
- Check if c is present in the substring S[0, N-2].
- If found to be true, print “YES”. otherwise print “NO”.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to check if a string can be // divided into two substrings such that // one substring is substring of the other void splitString(string S, int N) { // Store the last character of S char c = S[N - 1]; int f = 0; // Traverse the characters at indices [0, N-2] for ( int i = 0; i < N - 1; i++) { // Check if the current character is // equal to the last character if (S[i] == c) { // If true, set f = 1 f = 1; // Break out of the loop break ; } } if (f) cout << "Yes" ; else cout << "No" ; } // Driver Code int main() { // Given string, S string S = "abcdab" ; // Store the size of S int N = S.size(); // Function Call splitString(S, N); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG{ // Function to check if a String can be // divided into two subStrings such that // one subString is subString of the other static void splitString(String S, int N) { // Store the last character of S char c = S.charAt(N - 1 ); int f = 0 ; // Traverse the characters at indices [0, N-2] for ( int i = 0 ; i < N - 1 ; i++) { // Check if the current character is // equal to the last character if (S.charAt(i) == c) { // If true, set f = 1 f = 1 ; // Break out of the loop break ; } } if (f > 0 ) System.out.print( "Yes" ); else System.out.print( "No" ); } // Driver Code public static void main(String[] args) { // Given String, S String S = "abcdab" ; // Store the size of S int N = S.length(); // Function Call splitString(S, N); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to implement # the above approach # Function to check if a can be # divided into two substrings such that # one subis subof the other def splitString(S, N): # Store the last character of S c = S[N - 1 ] f = 0 # Traverse the characters at indices [0, N-2] for i in range (N - 1 ): # Check if the current character is # equal to the last character if (S[i] = = c): # If true, set f = 1 f = 1 # Break out of the loop break if (f): print ( "Yes" ) else : print ( "No" ) # Driver Code if __name__ = = '__main__' : # Given string, S S = "abcdab" # Store the size of S N = len (S) # Function Call splitString(S, N) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; class GFG{ // Function to check if a string can be // divided into two substrings such that // one substring is substring of the other static void splitString( string S, int N) { // Store the last character of S char c = S[N - 1]; int f = 0; // Traverse the characters at indices [0, N-2] for ( int i = 0; i < N - 1; i++) { // Check if the current character is // equal to the last character if (S[i] == c) { // If true, set f = 1 f = 1; // Break out of the loop break ; } } if (f != 0) Console.Write( "Yes" ); else Console.Write( "No" ); } // Driver code public static void Main() { // Given string, S string S = "abcdab" ; // Store the size of S int N = S.Length; // Function Call splitString(S, N); } } // This code is contributed by susmitakundugoaldanga |
Javascript
<script> // JavaScript program to implement // the above approach // Function to check if a String can be // divided into two subStrings such that // one subString is subString of the other function splitString(S , N) { // Store the last character of S var c = S.charAt(N - 1); var f = 0; // Traverse the characters at indices [0, N-2] for ( var i = 0; i < N - 1; i++) { // Check if the current character is // equal to the last character if (S.charAt(i) == c) { // If true, set f = 1 f = 1; // Break out of the loop break ; } } if (f > 0) document.write( "Yes" ); else document.write( "No" ); } // Driver Code //Given String, S var S = "abcdab" ; // Store the size of S var N = S.length; // Function Call splitString(S, N); // This code contributed by shikhasingrajput </script> |
Yes
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!