Given an array arr[] of N integers, the task is to find the sum of all elements between two zeros in the given array. If possible, then print all the sum, else print “-1”.
Note: There is no continuous zero in the given array.
Examples:
Input: arr[] = { 1, 0, 3, 4, 0, 4, 4, 0, 2, 1, 4, 0, 3 }
Output: 7 8 7
Explanation:
The sum of elements between every zero are:
3 + 4 = 7
4 + 4 = 8
2 + 1 + 4 = 7Input: arr[] = { 1, 3, 4, 6, 0}
Output: -1
Approach:
- Traverse the given array arr[] and find the first index with element 0.
- If any element with the value zero occurs, then start storing the sum of elements after it in a vector(say A[]) until the next zero occurs.
- Repeat the above steps for every zero that occurs.
- Print the elements stored in A[].
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include "bits/stdc++.h" using namespace std; // Function to find the sum between two // zeros in the given array arr[] void sumBetweenZero( int arr[], int N) { int i = 0; // To store the sum of element // between two zeros vector< int > A; // To store the sum int sum = 0; // Find first index of 0 for (i = 0; i < N; i++) { if (arr[i] == 0) { i++; break ; } } // Traverse the given array arr[] for (; i < N; i++) { // If 0 occurs then add it to A[] if (arr[i] == 0) { A.push_back(sum); sum = 0; } // Else add element to the sum else { sum += arr[i]; } } // Print all the sum stored in A for ( int i = 0; i < A.size(); i++) { cout << A[i] << ' ' ; } // If there is no such element print -1 if (A.size() == 0) cout << "-1" ; } // Driver Code int main() { int arr[] = { 1, 0, 3, 4, 0, 4, 4, 0, 2, 1, 4, 0, 3 }; int N = sizeof (arr) / sizeof (arr[0]); // Function call sumBetweenZero(arr, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the sum between two // zeros in the given array arr[] static void sumBetweenZero( int arr[], int N) { int i = 0 ; // To store the sum of element // between two zeros Vector<Integer> A = new Vector<Integer>(); // To store the sum int sum = 0 ; // Find first index of 0 for (i = 0 ; i < N; i++) { if (arr[i] == 0 ) { i++; break ; } } // Traverse the given array arr[] for (; i < N; i++) { // If 0 occurs then add it to A[] if (arr[i] == 0 ) { A.add(sum); sum = 0 ; } // Else add element to the sum else { sum += arr[i]; } } // Print all the sum stored in A for ( int j = 0 ; j < A.size(); j++) { System.out.print(A.get(j) + " " ); } // If there is no such element print -1 if (A.size() == 0 ) System.out.print( "-1" ); } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 0 , 3 , 4 , 0 , 4 , 4 , 0 , 2 , 1 , 4 , 0 , 3 }; int N = arr.length; // Function call sumBetweenZero(arr, N); } } // This code is contributed by gauravrajput1 |
Python3
#Python3 program for the above approach # Function to find the sum between two # zeros in the given array arr[] def sumBetweenZero(arr, N): i = 0 # To store the sum of the element # between two zeros A = [] # To store the sum sum = 0 # Find first index of 0 for i in range (N): if (arr[i] = = 0 ): i + = 1 break k = i # Traverse the given array arr[] for i in range (k, N, 1 ): # If 0 occurs then add it to A[] if (arr[i] = = 0 ): A.append( sum ) sum = 0 # Else add element to the sum else : sum + = arr[i] # Print all the sum stored in A for i in range ( len (A)): print (A[i], end = ' ' ) # If there is no such element print -1 if ( len (A) = = 0 ): print ( "-1" ) # Driver Code if __name__ = = '__main__' : arr = [ 1 , 0 , 3 , 4 , 0 , 4 , 4 , 0 , 2 , 1 , 4 , 0 , 3 ] N = len (arr) # Function call sumBetweenZero(arr, N) # This code is contributed by Bhupendra_Singh |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to find the sum between two // zeros in the given array []arr static void sumBetweenZero( int []arr, int N) { int i = 0; // To store the sum of element // between two zeros List< int > A = new List< int >(); // To store the sum int sum = 0; // Find first index of 0 for (i = 0; i < N; i++) { if (arr[i] == 0) { i++; break ; } } // Traverse the given array []arr for (; i < N; i++) { // If 0 occurs then add it to []A if (arr[i] == 0) { A.Add(sum); sum = 0; } // Else add element to the sum else { sum += arr[i]; } } // Print all the sum stored in A for ( int j = 0; j < A.Count; j++) { Console.Write(A[j] + " " ); } // If there is no such element print -1 if (A.Count == 0) Console.Write( "-1" ); } // Driver Code public static void Main(String[] args) { int []arr = { 1, 0, 3, 4, 0, 4, 4, 0, 2, 1, 4, 0, 3 }; int N = arr.Length; // Function call sumBetweenZero(arr, N); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript program for the above approach // Function to find the sum between two // zeros in the given array arr[] function sumBetweenZero(arr, N) { let i = 0; // To store the sum of element // between two zeros let A = new Array(); // To store the sum let sum = 0; // Find first index of 0 for (i = 0; i < N; i++) { if (arr[i] == 0) { i++; break ; } } // Traverse the given array arr[] for (; i < N; i++) { // If 0 occurs then add it to A[] if (arr[i] == 0) { A.push(sum); sum = 0; } // Else add element to the sum else { sum += arr[i]; } } // Print all the sum stored in A for (let i = 0; i < A.length; i++) { document.write(A[i] + ' ' ); } // If there is no such element print -1 if (A.length == 0) document.write( "-1" ); } // Driver Code let arr = [1, 0, 3, 4, 0, 4, 4, 0, 2, 1, 4, 0, 3]; let N = arr.length; // Function call sumBetweenZero(arr, N); // This code is contributed by _saurabh_jaiswal </script> |
7 8 7
Time Complexity: O(N), where N is the length of the array.
Space Complexity: O(N) as ans vector has been created.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!