Thursday, January 16, 2025
Google search engine
HomeData Modelling & AINumber of K-length paths in a Tree

Number of K-length paths in a Tree

Given a tree of N nodes and an integer K, the task is to find the total number of paths having length K.

Examples:

Input: N = 5, K = 2
tree =           1
                   /  \
                 2    5
               /  \
             3    4
Output: 4
Explanation: The paths having length 2 are
1 – 2 – 3, 1 – 2 – 4, 2 – 1 – 5, 3 – 2 – 4

Input: N = 2, K = 2
tree =       1
                /
              2
Output: 0
Explanation: There is no path in the tree having length 2.

Intuition: The main idea is to find the K-length paths from each node and add them.

  1. Find the number of K-length paths ‘originating’ from a given node ‘node’. ‘Originating’ here means, ‘node’ will have the smallest depth among all the nodes in the path. For example, 2-length paths originating from 1 are shown in the below diagram.
  2. Sum above value for all the nodes and it will be the required answer.

Naive Approach: To compute the K-length paths originating from ‘node’ two DFS are used. Say this entire process is: paths_originating_from(node)

  1. Suppose ‘node’ has multiple children and currently child ‘u’ is being processed.
  2. For all the previous children, the frequency of nodes at a particular depth has been calculated. More formally, freq[d] gives the number of nodes at depth ‘d’ when only children of ‘node’ before ‘u’ have been processed.
  3. If there is a node ‘x’ at depth ‘d’, number of K length paths originating from ‘node’ and passing through ‘x’ will be freq[K – d].
  4. The first DFSF would contribute to the final answer, and the second DFS would update the freq[] array for future use.
  5. Sum-up ‘paths_originating_from(node)’ for all nodes of the tree, this will be the required answer.

See the image below to understand the 2nd point better.

Below is the implementation of the above approach.

C++




// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
int mx_depth = 0, ans = 0;
int N, K;
vector<int> freq;
vector<vector<int> > g;
 
// This dfs is responsible for calculating ans
// and updating freq vector
void dfs(int node, int par, int depth,
         bool contri)
{
    if (depth > K)
        return;
    mx_depth = max(mx_depth, depth);
 
    if (contri) {
        ans += freq[K - depth];
    }
    else {
        freq[depth]++;
    }
 
    for (auto nebr : g[node]) {
        if (nebr != par) {
            dfs(nebr, node, depth + 1,
                contri);
        }
    }
}
 
// Function to calculate K length paths
// originating from node
void paths_originating_from(int node,
                            int par)
{
    mx_depth = 0;
    freq[0] = 1;
 
    // For every not-removed nebr,
    // calculate its contribution,
    // then update freq vector for it
    for (auto nebr : g[node]) {
        if (nebr != par) {
            dfs(nebr, node, 1, true);
            dfs(nebr, node, 1, false);
        }
    }
 
    // Re-initialize freq vector
    for (int i = 0; i <= mx_depth; ++i) {
        freq[i] = 0;
    }
 
    // Repeat the same for children
    for (auto nebr : g[node]) {
        if (nebr != par) {
            paths_originating_from(nebr,
                                   node);
        }
    }
}
 
// Utility method to add edges to tree
void edge(int a, int b)
{
    a--;
    b--;
    g[a].push_back(b);
    g[b].push_back(a);
}
 
// Driver code
int main()
{
    N = 5, K = 2;
    freq = vector<int>(N);
    g = vector<vector<int> >(N);
 
    edge(1, 2);
    edge(1, 5);
    edge(2, 3);
    edge(2, 4);
   
    paths_originating_from(0, -1);
    cout << ans << endl;
}


Java




import java.io.*;
import java.util.*;
 
public class Main {
  static int N, K, mx_depth = 0, ans = 0;
  ;
  static void edge(int a, int b,
                   ArrayList<ArrayList<Integer> > g)
  {
    a--;
    b--;
    g.get(a).add(b);
    g.get(b).add(a);
  }
  // This dfs is responsible for calculating ans
  // and updating freq vector
  static void dfs(int node, int par, int depth,
                  boolean contri, ArrayList<Integer> freq,
                  ArrayList<ArrayList<Integer> > g)
  {
    if (depth > K)
      return;
    mx_depth = Math.max(mx_depth, depth);
 
    if (contri) {
      ans += freq.get(K - depth);
    }
    else {
      freq.set(depth, freq.get(depth) + 1);
    }
 
    for (int i = 0; i < g.get(node).size(); i++) {
      int nebr = g.get(node).get(i);
      if (nebr != par) {
        dfs(nebr, node, depth + 1, contri, freq, g);
      }
    }
  }
 
  // Function to calculate K length paths
  // originating from node
  static void
    paths_originating_from(int node, int par,
                           ArrayList<Integer> freq,
                           ArrayList<ArrayList<Integer> > g)
  {
    mx_depth = 0;
    freq.set(0, 1);
 
    // For every not-removed nebr,
    // calculate its contribution,
    // then update freq vector for it
 
    for (int i = 0; i < g.get(node).size(); i++) {
      int nebr = g.get(node).get(i);
      if (nebr != par) {
        dfs(nebr, node, 1, true, freq, g);
        dfs(nebr, node, 1, false, freq, g);
      }
    }
 
    // Re-initialize freq vector
    for (int i = 0; i <= mx_depth; ++i) {
      freq.set(i, 0);
    }
 
    // Repeat the same for children
    for (int i = 0; i < g.get(node).size(); i++) {
      int nebr = g.get(node).get(i);
      if (nebr != par) {
        paths_originating_from(nebr, node, freq, g);
      }
    }
  }
  public static void main(String[] args)
  {
    N = 5;
    K = 2;
    ArrayList<Integer> freq = new ArrayList<Integer>();
    for (int i = 0; i < N; i++)
      freq.add(0);
    ArrayList<ArrayList<Integer> > g
      = new ArrayList<ArrayList<Integer> >();
    for (int i = 0; i < N; i++)
      g.add(new ArrayList<Integer>());
 
    edge(1, 2, g);
    edge(1, 5, g);
    edge(2, 3, g);
    edge(2, 4, g);
    paths_originating_from(0, -1, freq, g);
    System.out.println(ans);
  }
}
 
// This code is contributed by garg28harsh.


Python3




# Python code to implement above approach
mx_depth = 0
ans = 0
N = 5
K = 2
freq = [0] * N
g = [[] for _ in range(N)]
 
# This dfs is responsible for calculating ans
# and updating freq vector
 
 
def dfs(node, par, depth, contri):
    global mx_depth, ans, freq
    if depth > K:
        return
    mx_depth = max(mx_depth, depth)
 
    if contri:
        ans += freq[K - depth]
    else:
        freq[depth] += 1
 
    for nebr in g[node]:
        if nebr != par:
            dfs(nebr, node, depth + 1, contri)
 
# Function to calculate K length paths
# originating from node
 
 
def paths_originating_from(node, par):
    global mx_depth, freq
    mx_depth = 0
    freq[0] = 1
 
    # For every not-removed nebr,
    # calculate its contribution,
    # then update freq vector for it
    for nebr in g[node]:
        if nebr != par:
            dfs(nebr, node, 1, True)
            dfs(nebr, node, 1, False)
 
    # Re-initialize freq vector
    freq = [0] * (mx_depth + 1)
 
    # Repeat the same for children
    for nebr in g[node]:
        if nebr != par:
            paths_originating_from(nebr, node)
 
# Utility method to add edges to tree
 
 
def edge(a, b):
    a -= 1
    b -= 1
    g[a].append(b)
    g[b].append(a)
 
 
# Driver code
edge(1, 2)
edge(1, 5)
edge(2, 3)
edge(2, 4)
 
paths_originating_from(0, -1)
print(ans)


Javascript




// Javascript code to implement above approach
 
let max_Depth = 0, ans = 0, N, K, freq = [];
let g = new Array(1000).fill(0).map(() => new Array(0))
 
// This dfs is responsible for calculating ans
// and updating freq vector
function dfs(node, par, depth, contri) {
    if (depth > K)
        return;
    mx_depth = Math.max(mx_depth, depth);
 
    if (contri) {
        ans += freq[K - depth];
    }
    else {
        freq[depth]++;
    }
 
    for (let nebr of g[node]) {
        if (nebr != par) {
            dfs(nebr, node, depth + 1,
                contri);
        }
    }
}
 
// Function to calculate K length paths
// originating from node
function paths_originating_from(node, par) {
    mx_depth = 0;
    freq[0] = 1;
 
    // For every not-removed nebr,
    // calculate its contribution,
    // then update freq vector for it
    for (let nebr of g[node]) {
        if (nebr != par) {
            dfs(nebr, node, 1, true);
            dfs(nebr, node, 1, false);
        }
    }
 
    // Re-initialize freq vector
    for (let i = 0; i <= mx_depth; ++i) {
        freq[i] = 0;
    }
 
    // Repeat the same for children
    for (let nebr of g[node]) {
        if (nebr != par) {
            paths_originating_from(nebr,
                node);
        }
    }
}
 
// Utility method to add edges to tree
function edge(a, b) {
    a--;
    b--;
    g[a].push(b);
    g[b].push(a);
}
 
// Driver code
 
N = 5;
K = 2;
freq = new Array(N).fill(0);
g = new Array(1000).fill(0).map(() => new Array());
 
edge(1, 2);
edge(1, 5);
edge(2, 3);
edge(2, 4);
 
paths_originating_from(0, -1);
console.log(ans)


C#




// C# code to implement above approach
using System;
using System.Collections.Generic;
 
class Program {
    static int mx_depth = 0, ans = 0;
    static int N, K;
    static List<int> freq;
    static List<List<int> > g;
 
    // This dfs is responsible for calculating ans
    // and updating freq vector
    static void dfs(int node, int par, int depth,
                    bool contri)
    {
        if (depth > K)
            return;
        mx_depth = Math.Max(mx_depth, depth);
 
        if (contri) {
            ans += freq[K - depth];
        }
        else {
            freq[depth]++;
        }
 
        foreach(int nebr in g[node])
        {
            if (nebr != par) {
                dfs(nebr, node, depth + 1, contri);
            }
        }
    }
 
    // Function to calculate K length paths
    // originating from node
    static void paths_originating_from(int node, int par)
    {
        mx_depth = 0;
        freq[0] = 1;
 
        // For every not-removed nebr,
        // calculate its contribution,
        // then update freq vector for it
        foreach(int nebr in g[node])
        {
            if (nebr != par) {
                dfs(nebr, node, 1, true);
                dfs(nebr, node, 1, false);
            }
        }
 
        // Re-initialize freq vector
        for (int i = 0; i <= mx_depth; ++i) {
            freq[i] = 0;
        }
 
        // Repeat the same for children
        foreach(int nebr in g[node])
        {
            if (nebr != par) {
                paths_originating_from(nebr, node);
            }
        }
    }
 
    // Utility method to add edges to tree
    static void edge(int a, int b)
    {
        a--;
        b--;
        g[a].Add(b);
        g[b].Add(a);
    }
 
    // Driver code
    static void Main()
    {
        N = 5;
        K = 2;
        freq = new List<int>(N);
        g = new List<List<int> >(N);
 
        for (int i = 0; i < N; i++) {
            freq.Add(0);
            g.Add(new List<int>());
        }
 
        edge(1, 2);
        edge(1, 5);
        edge(2, 3);
        edge(2, 4);
 
        paths_originating_from(0, -1);
        Console.WriteLine(ans);
    }
}
 
// This code is contributed by rutikbhosale.


Output

4

Time Complexity: O(N * H) where H is the height of the tree which can be N at max
Auxiliary Space: O(N)

Efficient Approach: This approach is based on the concept of Centroid Decomposition. The steps are as follows:

  1. Find the centroid of current tree T.
  2. All ‘not-removed’ nodes reachable from T belong to its sub-tree. Call paths_originating_from(T), then mark T as ‘removed’.
  3. Repeat the above process for all ‘not-removed’ neighbors of T.

The following figure shows a tree with current centroid and its sub-tree. Note that nodes with thick borders have already been selected as centroids previously and do not belong to the sub-tree of the current centroid.

Below is the implementation of the above approach.

C++




// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
// Struct for centroid decomposition
struct CD {
    // 1. mx_depth will be used to store
    // the height of a node
    // 2. g[] is adjacency list for tree
    // 3. freq[] stores frequency of nodes
    // at particular height, it is maintained
    // for children of a node
    int n, k, mx_depth, ans;
    vector<bool> removed;
    vector<int> size, freq;
    vector<vector<int> > g;
 
    // Constructor for struct
    CD(int n1, int k1)
    {
        n = n1;
        k = k1;
        ans = mx_depth = 0;
 
        g.resize(n);
        size.resize(n);
        freq.resize(n);
        removed.assign(n, false);
    }
 
    // Utility method to add edges to tree
    void edge(int u, int v)
    {
        u--;
        v--;
        g[u].push_back(v);
        g[v].push_back(u);
    }
 
    // Finds size of a subtree,
    // ignoring removed nodes in the way
    int get_size(int node, int par)
    {
        if (removed[node])
            return 0;
        size[node] = 1;
 
        for (auto nebr : g[node]) {
            if (nebr != par) {
                size[node] += get_size(nebr,
                                       node);
            }
        }
 
        return size[node];
    }
 
    // Calculates centroid of a subtree
    // of 'node' of size 'sz'
    int get_centroid(int node, int par,
                     int sz)
    {
        for (auto nebr : g[node]) {
            if (nebr != par && !removed[nebr]
                && size[nebr] > sz / 2) {
                return get_centroid(nebr,
                                    node, sz);
            }
        }
        return node;
    }
 
    // Decompose the tree
    // into various centroids
    void decompose(int node, int par)
    {
        get_size(node, -1);
 
        // c is centroid of subtree 'node'
        int c = get_centroid(node, par,
                             size[node]);
 
        // Find paths_originating_from 'c'
        paths_originating_from(c);
 
        // Mark this centroid as removed
        removed = true;
 
        // Find other centroids
        for (auto nebr : g) {
            if (!removed[nebr]) {
                decompose(nebr, c);
            }
        }
    }
 
    // This dfs is responsible for
    // calculating ans and
    // updating freq vector
    void dfs(int node, int par, int depth,
             bool contri)
    {
        if (depth > k)
            return;
        mx_depth = max(mx_depth, depth);
 
        if (contri) {
            ans += freq[k - depth];
        }
        else {
            freq[depth]++;
        }
 
        for (auto nebr : g[node]) {
            if (nebr != par &&
                !removed[nebr]) {
                dfs(nebr, node,
                    depth + 1, contri);
            }
        }
    }
 
    // Function to find K-length paths
    // originating from node
    void paths_originating_from(int node)
    {
        mx_depth = 0;
        freq[0] = 1;
 
        // For every not-removed nebr,
        // calculate its contribution,
        // then update freq vector for it
        for (auto nebr : g[node]) {
            if (!removed[nebr]) {
                dfs(nebr, node, 1, true);
                dfs(nebr, node, 1, false);
            }
        }
         
        // Re-initialize freq vector
        for (int i = 0; i <= mx_depth; ++i) {
            freq[i] = 0;
        }
    }
};
 
// Driver code
int main()
{
    int N = 5, K = 2;
 
    CD cd_s(N, K);
    cd_s.edge(1, 2);
    cd_s.edge(1, 5);
    cd_s.edge(2, 3);
    cd_s.edge(2, 4);
 
    cd_s.decompose(0, -1);
    cout << cd_s.ans;
    return 0;
}


Java




// Java Code to implement above approach
import java.util.*;
 
public class Solution
{
   
    // Struct for centroid decomposition
    static class CD
    {
       
        // 1. mx_depth will be used to store
        // the height of a node
        // 2. g[] is adjacency list for tree
        // 3. freq[] stores frequency of nodes
        // at particular height, it is maintained
        // for children of a node
        int n, k, mx_depth, ans;
        boolean[] removed;
        int[] size, freq;
        ArrayList<ArrayList<Integer> > g;
 
        // Constructor for struct
        CD(int n1, int k1)
        {
            n = n1;
            k = k1;
            ans = mx_depth = 0;
 
            g = new ArrayList<>();
            for (int i = 0; i < n; i++) {
                g.add(new ArrayList<>());
            }
            size = new int[n];
            freq = new int[n];
            removed = new boolean[n];
        }
 
        // Utility method to add edges to tree
        public void edge(int u, int v)
        {
            u--;
            v--;
            g.get(u).add(v);
            g.get(v).add(u);
        }
 
        // Finds size of a subtree,
        // ignoring removed nodes in the way
        public int get_size(int node, int par)
        {
            if (removed[node])
                return 0;
            size[node] = 1;
 
            for (Integer nebr : g.get(node)) {
                if (nebr != par) {
                    size[node] += get_size(nebr, node);
                }
            }
 
            return size[node];
        }
 
        // Calculates centroid of a subtree
        // of 'node' of size 'sz'
        int get_centroid(int node, int par, int sz)
        {
            for (Integer nebr : g.get(node)) {
                if (nebr != par && !removed[nebr]
                    && size[nebr] > sz / 2) {
                    return get_centroid(nebr, node, sz);
                }
            }
            return node;
        }
 
        // Decompose the tree
        // into various centroids
        public void decompose(int node, int par)
        {
            get_size(node, -1);
 
            // c is centroid of subtree 'node'
            int c = get_centroid(node, par, size[node]);
 
            // Find paths_originating_from 'c'
            paths_originating_from(c);
 
            // Mark this centroid as removed
            removed = true;
 
            // Find other centroids
            for (Integer nebr : g.get(c)) {
                if (!removed[nebr]) {
                    decompose(nebr, c);
                }
            }
        }
 
        // This dfs is responsible for
        // calculating ans and
        // updating freq vector
        void dfs(int node, int par, int depth,
                 boolean contri)
        {
            if (depth > k)
                return;
            mx_depth = Math.max(mx_depth, depth);
 
            if (contri) {
                ans += freq[k - depth];
            }
            else {
                freq[depth]++;
            }
 
            for (Integer nebr : g.get(node)) {
                if (nebr != par && !removed[nebr]) {
                    dfs(nebr, node, depth + 1, contri);
                }
            }
        }
 
        // Function to find K-length paths
        // originating from node
        void paths_originating_from(int node)
        {
            mx_depth = 0;
            freq[0] = 1;
 
            // For every not-removed nebr,
            // calculate its contribution,
            // then update freq vector for it
            for (Integer nebr : g.get(node)) {
                if (!removed[nebr]) {
                    dfs(nebr, node, 1, true);
                    dfs(nebr, node, 1, false);
                }
            }
 
            // Re-initialize freq vector
            for (int i = 0; i <= mx_depth; ++i) {
                freq[i] = 0;
            }
        }
    };
 
    // Driver code
    public static void main(String[] args)
    {
        int N = 5, K = 2;
 
        CD cd_s = new CD(N, K);
        cd_s.edge(1, 2);
        cd_s.edge(1, 5);
        cd_s.edge(2, 3);
        cd_s.edge(2, 4);
 
        cd_s.decompose(0, -1);
        System.out.println(cd_s.ans);
    }
}
 
// This code is contributed by karandeep1234


Python3




# Python code to implement above approach
 
# Struct for centroid decomposition
 
 
class CD:
    # Constructor for struct
    def __init__(self, n1, k1):
        self.n = n1
        self.k = k1
        self.ans = self.mx_depth = 0
        self.removed = [False]*n1
        self.size = [0]*n1
        self.freq = [0]*n1
        self.g = [[] for i in range(n1)]
 
    # Utility method to add edges to tree
    def edge(self, u, v):
        u -= 1
        v -= 1
        self.g[u].append(v)
        self.g[v].append(u)
 
    # Finds size of a subtree,
    # ignoring removed nodes in the way
    def get_size(self, node, par):
        if self.removed[node]:
            return 0
        self.size[node] = 1
 
        for nebr in self.g[node]:
            if nebr != par:
                self.size[node] += self.get_size(nebr, node)
 
        return self.size[node]
 
    # Calculates centroid of a subtree
    # of 'node' of size 'sz'
    def get_centroid(self, node, par, sz):
        for nebr in self.g[node]:
            if nebr != par and not self.removed[nebr] and self.size[nebr] > sz / 2:
                return self.get_centroid(nebr, node, sz)
        return node
 
    # Decompose the tree
    # into various centroids
    def decompose(self, node, par):
        self.get_size(node, -1)
 
        # c is centroid of subtree 'node'
        c = self.get_centroid(node, par, self.size[node])
 
        # Find paths_originating_from 'c'
        self.paths_originating_from(c)
 
        # Mark this centroid as removed
        self.removed = True
 
        # Find other centroids
        for nebr in self.g:
            if not self.removed[nebr]:
                self.decompose(nebr, c)
 
    # This dfs is responsible for
    # calculating ans and
    # updating freq vector
    def dfs(self, node, par, depth, contri):
        if depth > self.k:
            return
        self.mx_depth = max(self.mx_depth, depth)
 
        if contri:
            self.ans += self.freq[self.k - depth]
        else:
            self.freq[depth] += 1
 
        for nebr in self.g[node]:
            if nebr != par and not self.removed[nebr]:
                self.dfs(nebr, node, depth + 1, contri)
 
    # Function to find K-length paths
    # originating from node
    def paths_originating_from(self, node):
        self.mx_depth = 0
        self.freq[0] = 1
 
        # For every not-removed nebr,
        # calculate its contribution,
        # then update freq vector for it
        for nebr in self.g[node]:
            if not self.removed[nebr]:
                self.dfs(nebr, node, 1, True)
                self.dfs(nebr, node, 1, False)
 
        # Re-initialize freq vector
        for i in range(self.mx_depth+1):
            self.freq[i] = 0
 
 
# Driver code
if __name__ == "__main__":
    N = 5
    K = 2
 
    cd_s = CD(N, K)
    cd_s.edge(1, 2)
    cd_s.edge(1, 5)
    cd_s.edge(2, 3)
    cd_s.edge(2, 4)
    cd_s.decompose(0, -1)
    print(cd_s.ans)


Javascript




class CD {
    constructor(n1, k1) {
        this.n = n1;
        this.k = k1;
        this.ans = this.mx_depth = 0;
        this.removed = Array(n1).fill(false);
        this.size = Array(n1).fill(0);
        this.freq = Array(n1).fill(0);
        this.g = Array(n1).fill().map(() => []);
    }
 
    edge(u, v) {
        u -= 1;
        v -= 1;
        this.g[u].push(v);
        this.g[v].push(u);
    }
 
    get_size(node, par) {
        if (this.removed[node]) {
            return 0;
        }
        this.size[node] = 1;
 
        for (let nebr of this.g[node]) {
            if (nebr !== par) {
                this.size[node] += this.get_size(nebr, node);
            }
        }
 
        return this.size[node];
    }
 
    get_centroid(node, par, sz) {
        for (let nebr of this.g[node]) {
            if (!this.removed[nebr] && nebr !== par && this.size[nebr] > sz / 2) {
                return this.get_centroid(nebr, node, sz);
            }
        }
        return node;
    }
 
    decompose(node, par) {
        this.get_size(node, -1);
        let c = this.get_centroid(node, par, this.size[node]);
        this.paths_originating_from(c);
        this.removed = true;
 
        for (let nebr of this.g) {
            if (!this.removed[nebr]) {
                this.decompose(nebr, c);
            }
        }
    }
 
    dfs(node, par, depth, contri) {
        if (depth > this.k) {
            return;
        }
        this.mx_depth = Math.max(this.mx_depth, depth);
 
        if (contri) {
            this.ans += this.freq[this.k - depth];
        } else {
            this.freq[depth] += 1;
        }
 
        for (let nebr of this.g[node]) {
            if (nebr !== par && !this.removed[nebr]) {
                this.dfs(nebr, node, depth + 1, contri);
            }
        }
    }
 
    paths_originating_from(node) {
        this.mx_depth = 0;
        this.freq[0] = 1;
 
        for (let nebr of this.g[node]) {
            if (!this.removed[nebr]) {
                this.dfs(nebr, node, 1, true);
                this.dfs(nebr, node, 1, false);
            }
        }
 
        for (let i = 0; i < this.mx_depth + 1; i++) {
            this.freq[i] = 0;
        }
    }
}
 
const N = 5;
const K = 2;
 
const cd_s = new CD(N, K);
cd_s.edge(1, 2);
cd_s.edge(1, 5);
cd_s.edge(2, 3);
cd_s.edge(2, 4);
cd_s.decompose(0, -1);
console.log(cd_s.ans);


C#




// C++ code to implement above approach
using System;
using System.Collections.Generic;
 
class CD {
    // 1. mx_depth will be used to store
    // the height of a node
    // 2. g[] is adjacency list for tree
    // 3. freq[] stores frequency of nodes
    // at particular height, it is maintained
    // for children of a node
    private int n, k, mx_depth, ans;
    private List<bool> removed;
    private List<int> size, freq;
    private List<List<int> > g;
 
    // Constructor for struct
    public CD(int n1, int k1)
    {
        n = n1;
        k = k1;
        ans = mx_depth = 0;
 
        g = new List<List<int> >();
        for (int i = 0; i < n; i++)
            g.Add(new List<int>());
 
        size = new List<int>();
        size.AddRange(new int[n]);
 
        freq = new List<int>();
        freq.AddRange(new int[n]);
 
        removed = new List<bool>();
        removed.AddRange(new bool[n]);
    }
 
    // Utility method to add edges to tree
    public void Edge(int u, int v)
    {
        u--;
        v--;
        g[u].Add(v);
        g[v].Add(u);
    }
 
    // Finds size of a subtree,
    // ignoring removed nodes in the way
    private int GetSize(int node, int par)
    {
        if (removed[node])
            return 0;
        size[node] = 1;
 
        foreach(int nebr in g[node])
        {
            if (nebr != par)
                size[node] += GetSize(nebr, node);
        }
        return size[node];
    }
 
    // Calculates centroid of a subtree
    // of 'node' of size 'sz'
 
    private int GetCentroid(int node, int par, int sz)
    {
        foreach(int nebr in g[node])
        {
            if (!removed[nebr] && nebr != par
                && size[nebr] > sz / 2)
                return GetCentroid(nebr, node, sz);
        }
        return node;
    }
 
    // Decompose the tree
    // into various centroids
    private void Decompose(int node, int par)
    {
        GetSize(node, -1);
        // c is centroid of subtree 'node'
        int c = GetCentroid(node, par, size[node]);
        // Find paths_originating_from 'c'
        PathsOriginatingFrom(c);
        // Mark this centroid as removed
        removed = true;
        // Find other centroids
        foreach(int nebr in g)
        {
            if (!removed[nebr])
                Decompose(nebr, c);
        }
    }
 
    // This dfs is responsible for
    // calculating ans and
    // updating freq vector
 
    private void Dfs(int node, int par, int depth,
                     bool contri)
    {
        if (depth > k)
            return;
        mx_depth = Math.Max(mx_depth, depth);
 
        if (contri)
            ans += freq[k - depth];
        else
            freq[depth]++;
 
        foreach(int nebr in g[node])
        {
            if (!removed[nebr] && nebr != par)
                Dfs(nebr, node, depth + 1, contri);
        }
    }
    // Function to find K-length paths
    // originating from node
    private void PathsOriginatingFrom(int node)
    {
        mx_depth = 0;
        freq[0] = 1;
        // For every not-removed nebr,
        // calculate its contribution,
        // then update freq vector for it
 
        foreach(int nebr in g[node])
        {
            if (!removed[nebr]) {
                Dfs(nebr, node, 1, true);
                Dfs(nebr, node, 1, false);
            }
        }
 
        for (int i = 0; i <= mx_depth; i++)
            freq[i] = 0;
    }
 
    public int Solve()
    {
        Decompose(0, -1);
        return ans;
    }
}
// Driver code
class Program {
    static void Main(string[] args)
    {
        int N = 5, K = 2;
 
        CD cd_s = new CD(N, K);
        cd_s.Edge(1, 2);
        cd_s.Edge(1, 5);
        cd_s.Edge(2, 3);
        cd_s.Edge(2, 4);
 
        Console.WriteLine(cd_s.Solve());
    }
}
// This code is generated by Chetan Bargal


Output

4

Time Complexity: O(N * log(N)) where log N is the height of the tree
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments