Integers X and K are given. The task is to find the smallest K-digit number divisible by X.
Examples :
Input : X = 83, K = 5 Output : 10043 10040 is the smallest 5 digit number that is multiple of 83. Input : X = 5, K = 2 Output : 10
A simple solution is to try all numbers starting from the smallest K digit number
(which is 100…(K-1)times) and return the first number divisible by X.
An efficient solution would be :
Compute MIN : smallest K-digit number (1000...(K-1)times) If, MIN % X is 0, ans = MIN else, ans = (MIN + X) - ((MIN + X) % X)) This is because there will be a number in range [MIN...MIN+X] divisible by X.
C++
// C++ code to find smallest K-digit number // divisible by X #include <bits/stdc++.h> using namespace std; // Function to compute the result int answer( int X, int K) { // Computing MIN int MIN = pow (10, K - 1); // MIN is the result if (MIN % X == 0) return MIN; // returning ans return ((MIN + X) - ((MIN + X) % X)); } // Driver Code int main() { // Number whose divisible is to be found int X = 83; // Max K-digit divisible is to be found int K = 5; cout << answer(X, K); } |
Java
// Java code to find smallest K-digit // number divisible by X import java.io.*; import java.lang.*; class GFG { public static double answer( double X, double K) { double i = 10 ; // Computing MIN double MIN = Math.pow(i, K - 1 ); // returning ans if (MIN % X == 0 ) return (MIN); else return ((MIN + X) - ((MIN + X) % X)); } public static void main(String[] args) { // Number whose divisible is to be found double X = 83 ; double K = 5 ; System.out.println(( int )answer(X, K)); } } // Code contributed by Mohit Gupta_OMG <(0_o)> |
Python3
# Python code to find smallest K-digit # number divisible by X def answer(X, K): # Computing MAX MIN = pow ( 10 , K - 1 ) if ( MIN % X = = 0 ): return ( MIN ) else : return (( MIN + X) - (( MIN + X) % X)) X = 83 ; K = 5 ; print (answer(X, K)); # Code contributed by Mohit Gupta_OMG <(0_o)> |
C#
// C# code to find smallest K-digit // number divisible by X using System; class GFG { // Function to compute the result public static double answer( double X, double K) { double i = 10; // Computing MIN double MIN = Math.Pow(i, K - 1); // returning ans if (MIN % X == 0) return MIN; else return ((MIN + X) - ((MIN + X) % X)); } // Driver code public static void Main() { // Number whose divisible is to be found double X = 83; double K = 5; Console.WriteLine(( int )answer(X, K)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP code to find smallest // K-digit number divisible by X // Function to compute // the result function answer( $X , $K ) { // Computing MIN $MIN = pow(10, $K - 1); // MIN is the result if ( $MIN % $X == 0) return $MIN ; // returning ans return (( $MIN + $X ) - (( $MIN + $X ) % $X )); } // Driver Code // Number whose divisible // is to be found $X = 83; // Max K-digit divisible // is to be found $K = 5; echo answer( $X , $K ); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript code to find smallest // K-digit number divisible by X // Function to compute // the result function answer(X, K) { // Computing MIN let MIN = Math.pow(10, K - 1); // MIN is the result if (MIN % X == 0) return MIN; // returning ans return ((MIN + X) - ((MIN + X) % X)); } // Driver Code // Number whose divisible // is to be found let X = 83; // Max K-digit divisible // is to be found let K = 5; document.write(answer(X, K)); // This code is contributed by sravan kumar </script> |
Output :
10043
Time Complexity: O(logk)
Auxiliary Space: O(1)
This article is contributed by Rohit Thapliyal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!