Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIJava Program For Finding Subarray With Given Sum – Set 1 (Nonnegative...

Java Program For Finding Subarray With Given Sum – Set 1 (Nonnegative Numbers)

Given an unsorted array of nonnegative integers, find a continuous subarray which adds to a given number. 
Examples : 

Input: arr[] = {1, 4, 20, 3, 10, 5}, sum = 33
Output: Sum found between indexes 2 and 4
Sum of elements between indices
2 and 4 is 20 + 3 + 10 = 33

Input: arr[] = {1, 4, 0, 0, 3, 10, 5}, sum = 7
Output: Sum found between indexes 1 and 4
Sum of elements between indices
1 and 4 is 4 + 0 + 0 + 3 = 7

Input: arr[] = {1, 4}, sum = 0
Output: No subarray found
There is no subarray with 0 sum

There may be more than one subarrays with sum as the given sum. The following solutions print first such subarray. 

Simple Approach: A simple solution is to consider all subarrays one by one and check the sum of every subarray. Following program implements the simple solution. Run two loops: the outer loop picks a starting point I and the inner loop tries all subarrays starting from i.
Algorithm:  

  1. Traverse the array from start to end.
  2. From every index start another loop from i to the end of array to get all subarray starting from i, keep a variable sum to calculate the sum.
  3. For every index in inner loop update sum = sum + array[j]
  4. If the sum is equal to the given sum then print the subarray.

Java




// Java program to implement
// the above approach
class SubarraySum 
{
    /* Returns true if the there is a 
       subarray of arr[] with a sum equal 
       to 'sum' otherwise returns false. 
       Also, prints the result */
    int subArraySum(int arr[], int n, 
                    int sum)
    {
        int curr_sum, i, j;
  
        // Pick a starting point
        for (i = 0; i < n; i++) 
        {
            curr_sum = arr[i];
  
            // Try all subarrays starting with 'i'
            for (j = i + 1; j <= n; j++) 
            {
                if (curr_sum == sum) 
                {
                    int p = j - 1;
                    System.out.println(
                     "Sum found between indexes "
                      i + " and " + p);
                    return 1;
                }
                if (curr_sum > sum || j == n)
                    break;
                curr_sum = curr_sum + arr[j];
            }
        }
        System.out.println("No subarray found");
        return 0;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        SubarraySum arraysum = 
                    new SubarraySum();
        int arr[] = {15, 2, 4, 8
                     9, 5, 10, 23 };
        int n = arr.length;
        int sum = 23;
        arraysum.subArraySum(arr, n, sum);
    }
}
// This code is contributed by Mayank Jaiswal(mayank_24)


Output :

Sum found between indexes 1 and 4

Complexity Analysis:  

  • Time Complexity: O(n^2) in worst case. 
    Nested loop is used to traverse the array so the time complexity is O(n^2)
  • Space Complexity: O(1). 
    As constant extra space is required.

Efficient Approach: There is an idea if all the elements of the array are positive. If a subarray has sum greater than the given sum then there is no possibility that adding elements to the current subarray the sum will be x (given sum). Idea is to use a similar approach to a sliding window. Start with an empty subarray, add elements to the subarray until the sum is less than x. If the sum is greater than x, remove elements from the start of the current subarray.
Algorithm:  

  1. Create three variables, l=0, sum = 0
  2. Traverse the array from start to end.
  3. Update the variable sum by adding current element, sum = sum + array[i]
  4. If the sum is greater than the given sum, update the variable sum as sum = sum – array[l], and update l as, l++.
  5. If the sum is equal to given sum, print the subarray and break the loop.

Java




// Java program to implement
// the above approach
class SubarraySum 
{
    /* Returns true if the there is a 
       subarray of arr[] with sum equal 
       to 'sum' otherwise returns false.  
       Also, prints the result */
    int subArraySum(int arr[], int n, 
                    int sum)
    {
        int curr_sum = arr[0], start = 0, i;
  
        // Pick a starting point
        for (i = 1; i <= n; i++) 
        {
            // If curr_sum exceeds the sum,
            // then remove the starting elements
            while (curr_sum > sum && start < i - 1
            {
                curr_sum = curr_sum - arr[start];
                start++;
            }
            // If curr_sum becomes equal to sum,
            // then return true
            if (curr_sum == sum) 
            {
                int p = i - 1;
                System.out.println(
                "Sum found between indexes "
                 start + " and " + p);
                return 1;
            }
            // Add this element to curr_sum
            if (i < n)
                curr_sum = curr_sum + arr[i];
        }
        System.out.println("No subarray found");
        return 0;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        SubarraySum arraysum = 
                    new SubarraySum();
        int arr[] = {15, 2, 4, 8
                     9, 5, 10, 23};
        int n = arr.length;
        int sum = 23;
        arraysum.subArraySum(arr, n, sum);
    }
}
// This code is contributed by Mayank Jaiswal(mayank_24)


Output :

Sum found between indexes 1 and 4

Complexity Analysis:  

  • Time Complexity : O(n). 
    Only one traversal of the array is required. So the time complexity is O(n).
  • Space Complexity: O(1). 
    As constant extra space is required.

Please refer complete article on Find subarray with given sum | Set 1 (Nonnegative Numbers) for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments