Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIModify Binary Tree by replacing each node with the product of all...

Modify Binary Tree by replacing each node with the product of all remaining nodes

Given a Binary Tree consisting of N nodes, the task is to replace each node of the tree with the product of all the remaining nodes.

Examples: 

Input:
          1
      /     \
   2        3
          /    \
        4      5
Output:
      120
      /   \
  60   40
         /   \
     30   24          

Input:
         2
      /   \
  2       3
Output:
      6
   /   \
6      4

Approach: The given problem can be solved by first calculating the product of all the nodes in the given Tree and then perform any tree traversal on the given tree and update each node by the value (P/(root->values). Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// A Tree node
class Node {
public:
    int data;
    Node *left, *right;
 
    // Constructor
    Node(int data)
    {
        this->data = data;
        left = NULL;
        right = NULL;
    }
};
 
// Function to create a new node in
// the given Tree
Node* newNode(int value)
{
    Node* temp = new Node(value);
    return (temp);
}
 
// Function to find the product of
// all the nodes in the given Tree
int findProduct(Node* root)
{
    // Base Case
    if (root == NULL)
        return 1;
 
    // Recursively Call for the left
    // and the right subtree
    return (root->data
            * findProduct(root->left)
            * findProduct(root->right));
}
 
// Function to perform the Inorder
// traversal of the given tree
void display(Node* root)
{
    // Base Case
    if (root == NULL)
        return;
 
    // Recursively call for the
    // left subtree
    display(root->left);
 
    // Print the value
    cout << root->data << " ";
 
    // Recursively call for the
    // right subtree
    display(root->right);
}
 
// Function to convert the given tree
// to the multiplication tree
void convertTree(int product,
                 Node* root)
{
    // Base Case
    if (root == NULL)
        return;
 
    // Divide the total product by
    // the root's data
    root->data = product / (root->data);
 
    // Go to the left subtree
    convertTree(product, root->left);
 
    // Go to the right subtree
    convertTree(product, root->right);
}
 
// Driver Code
int main()
{
    // Given Binary Tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
 
    root->right->left = newNode(4);
    root->right->right = newNode(5);
 
    cout << "Inorder Traversal of "
         << "given Tree:\n";
 
    // Print the tree traversal
    display(root);
 
    int product = findProduct(root);
 
    cout << "\nInorder Traversal of "
         << "given Tree:\n";
 
    // Function Call
    convertTree(product, root);
 
    // Print the tree traversal
    display(root);
 
    return 0;
}


Python3




# Python3 program for the above approach
 
# A Tree node
class Node:
     
    def __init__(self, d):
         
        self.data = d
        self.left = None
        self.right = None
 
# Function to find the product of
# all the nodes in the given Tree
def findProduct(root):
     
    # Base Case
    if (root == None):
        return 1
 
    # Recursively Call for the left
    # and the right subtree
    return (root.data * findProduct(root.left) *
                        findProduct(root.right))
 
# Function to perform the Inorder
# traversal of the given tree
def display(root):
     
    # Base Case
    if (root == None):
        return
 
    # Recursively call for the
    # left subtree
    display(root.left)
 
    # Print the value
    print(root.data, end = " ")
 
    # Recursively call for the
    # right subtree
    display(root.right)
 
# Function to convert the given tree
# to the multiplication tree
def convertTree(product, root):
     
    # Base Case
    if (root == None):
        return
 
    # Divide the total product by
    # the root's data
    root.data = product // (root.data)
 
    # Go to the left subtree
    convertTree(product, root.left)
 
    # Go to the right subtree
    convertTree(product, root.right)
 
# Driver Code
if __name__ == '__main__':
     
    # Given Binary Tree
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.right.left = Node(4)
    root.right.right = Node(5)
 
    print("Inorder Traversal of given Tree: ")
 
    # Print the tree traversal
    display(root)
 
    product = findProduct(root)
 
    print("\nInorder Traversal of given Tree:")
 
    # Function Call
    convertTree(product, root)
 
    # Print the tree traversal
    display(root)
 
# This code is contributed by mohit kumar 29


Java




// Java program for the above approach
public class GFG {
    // TreeNode class
    static class Node {
        public int data;
        public Node left, right;
    };
 
    static Node newNode(int key)
    {
        Node temp = new Node();
        temp.data = key;
        temp.left = temp.right = null;
        return temp;
    }
 
    // Function to find the product of
    // all the nodes in the given Tree
    static int findProduct(Node root)
    {
        // Base Case
        if (root == null)
            return 1;
 
        // Recursively Call for the left
        // and the right subtree
        return (root.data * findProduct(root.left)
                * findProduct(root.right));
    }
 
    // Function to perform the Inorder
    // traversal of the given tree
    static void display(Node root)
    {
        // Base Case
        if (root == null)
            return;
 
        // Recursively call for the
        // left subtree
        display(root.left);
 
        // Print the value
        System.out.print(root.data + " ");
 
        // Recursively call for the
        // right subtree
        display(root.right);
    }
 
    // Function to convert the given tree
    // to the multiplication tree
    static void convertTree(int product, Node root)
    {
        // Base Case
        if (root == null)
            return;
 
        // Divide the total product by
        // the root's data
        root.data = product / (root.data);
 
        // Go to the left subtree
        convertTree(product, root.left);
 
        // Go to the right subtree
        convertTree(product, root.right);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        // Given Binary Tree
        Node root = newNode(1);
        root.left = newNode(2);
        root.right = newNode(3);
 
        root.right.left = newNode(4);
        root.right.right = newNode(5);
 
        System.out.println("Inorder Traversal of "
                           + "given Tree:");
 
        // Print the tree traversal
        display(root);
 
        int product = findProduct(root);
 
        System.out.println("\nInorder Traversal of "
                           + "given Tree:");
 
        // Function Call
        convertTree(product, root);
 
        // Print the tree traversal
        display(root);
    }
}
// This code is contributed by abhinavjain194


C#




// C# program for the above approach
using System;
 
public class GFG {
    // TreeNode class
    class Node {
        public int data;
        public Node left, right;
    };
 
    static Node newNode(int key)
    {
        Node temp = new Node();
        temp.data = key;
        temp.left = temp.right = null;
        return temp;
    }
 
    // Function to find the product of
    // all the nodes in the given Tree
    static int findProduct(Node root)
    {
        // Base Case
        if (root == null)
            return 1;
 
        // Recursively Call for the left
        // and the right subtree
        return (root.data * findProduct(root.left)
                * findProduct(root.right));
    }
 
    // Function to perform the Inorder
    // traversal of the given tree
    static void display(Node root)
    {
        // Base Case
        if (root == null)
            return;
 
        // Recursively call for the
        // left subtree
        display(root.left);
 
        // Print the value
        Console.Write(root.data + " ");
 
        // Recursively call for the
        // right subtree
        display(root.right);
    }
 
    // Function to convert the given tree
    // to the multiplication tree
    static void convertTree(int product, Node root)
    {
        // Base Case
        if (root == null)
            return;
 
        // Divide the total product by
        // the root's data
        root.data = product / (root.data);
 
        // Go to the left subtree
        convertTree(product, root.left);
 
        // Go to the right subtree
        convertTree(product, root.right);
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        // Given Binary Tree
        Node root = newNode(1);
        root.left = newNode(2);
        root.right = newNode(3);
 
        root.right.left = newNode(4);
        root.right.right = newNode(5);
 
        Console.WriteLine("Inorder Traversal of "
                           + "given Tree:");
 
        // Print the tree traversal
        display(root);
 
        int product = findProduct(root);
 
        Console.WriteLine("\nInorder Traversal of "
                           + "given Tree:");
 
        // Function Call
        convertTree(product, root);
 
        // Print the tree traversal
        display(root);
    }
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
      // JavaScript program for the above approach
      // TreeNode class
      class Node {
        constructor() {
          this.data = 0;
          this.left = null;
          this.right = null;
        }
      }
 
      function newNode(key) {
        var temp = new Node();
        temp.data = key;
        temp.left = temp.right = null;
        return temp;
      }
 
      // Function to find the product of
      // all the nodes in the given Tree
      function findProduct(root) {
        // Base Case
        if (root == null) return 1;
 
        // Recursively Call for the left
        // and the right subtree
        return root.data * findProduct(root.left) * findProduct(root.right);
      }
 
      // Function to perform the Inorder
      // traversal of the given tree
      function display(root) {
        // Base Case
        if (root == null) return;
 
        // Recursively call for the
        // left subtree
        display(root.left);
 
        // Print the value
        document.write(root.data + " ");
 
        // Recursively call for the
        // right subtree
        display(root.right);
      }
 
      // Function to convert the given tree
      // to the multiplication tree
      function convertTree(product, root) {
        // Base Case
        if (root == null) return;
 
        // Divide the total product by
        // the root's data
        root.data = parseInt(product / root.data);
 
        // Go to the left subtree
        convertTree(product, root.left);
 
        // Go to the right subtree
        convertTree(product, root.right);
      }
 
      // Driver code
      // Given Binary Tree
      var root = newNode(1);
      root.left = newNode(2);
      root.right = newNode(3);
 
      root.right.left = newNode(4);
      root.right.right = newNode(5);
 
      document.write("Inorder Traversal of " + "given Tree: <br>");
 
      // Print the tree traversal
      display(root);
 
      var product = findProduct(root);
 
      document.write("<br>Inorder Traversal of " + "given Tree:<br>");
 
      // Function Call
      convertTree(product, root);
 
      // Print the tree traversal
      display(root);
       
      // This code is contributed by rdtank.
    </script>


Output: 

Inorder Traversal of given Tree:
2 1 4 3 5 
Inorder Traversal of given Tree:
60 120 30 40 24

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments