Given an array arr of size N elements, the task is to count the number of pairs of elements in the array whose sum is prime.
Examples:
Input: arr = {1, 2, 3, 4, 5}
Output: 5
Explanation: Pairs with sum as a prime number are: {1, 2}, {1, 4}, {2, 3}, {2, 5} and {3, 4}Input: arr = {10, 20, 30, 40}
Output: 0
Explanation: No pair whose sum is a prime number exists.
Naive Approach:
Calculate the sum of every pair of elements in the array and check if that sum is a prime number or not.
Below code is the implementation of the above approach:
C++
// C++ code to count of pairs // of elements in an array // whose sum is prime #include <bits/stdc++.h> using namespace std; // Function to check whether a // number is prime or not bool isPrime( int num) { if (num == 0 || num == 1) { return false ; } for ( int i = 2; i * i <= num; i++) { if (num % i == 0) { return false ; } } return true ; } // Function to count total number of pairs // of elements whose sum is prime int numPairsWithPrimeSum( int * arr, int n) { int count = 0; for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { int sum = arr[i] + arr[j]; if (isPrime(sum)) { count++; } } } return count; } // Driver Code int main() { int arr[] = { 1, 2, 3, 4, 5 }; int n = sizeof (arr) / sizeof (arr[0]); cout << numPairsWithPrimeSum(arr, n); return 0; } |
Java
// Java code to find number of pairs of // elements in an array whose sum is prime import java.io.*; import java.util.*; class GFG { // Function to check whether a number // is prime or not public static boolean isPrime( int num) { if (num == 0 || num == 1 ) { return false ; } for ( int i = 2 ; i * i <= num; i++) { if (num % i == 0 ) { return false ; } } return true ; } // Function to count total number of pairs // of elements whose sum is prime public static int numPairsWithPrimeSum( int [] arr, int n) { int count = 0 ; for ( int i = 0 ; i < n; i++) { for ( int j = i + 1 ; j < n; j++) { int sum = arr[i] + arr[j]; if (isPrime(sum)) { count++; } } } return count; } // Driver code public static void main(String[] args) { int [] arr = { 1 , 2 , 3 , 4 , 5 }; int n = arr.length; System.out.println( numPairsWithPrimeSum(arr, n)); } } |
Python3
# Python3 code to find number of pairs of # elements in an array whose sum is prime import math # Function to check whether a # number is prime or not def isPrime(num): sq = int (math.ceil(math.sqrt(num))) if num = = 0 or num = = 1 : return False for i in range ( 2 , sq + 1 ): if num % i = = 0 : return False return True # Function to count total number of pairs # of elements whose sum is prime def numPairsWithPrimeSum(arr, n): count = 0 for i in range (n): for j in range (i + 1 , n): sum = arr[i] + arr[j] if isPrime( sum ): count + = 1 return count # Driver Code arr = [ 1 , 2 , 3 , 4 , 5 ] n = len (arr) print (numPairsWithPrimeSum(arr, n)) # This code is contributed by grand_master |
C#
// C# code to find number of pairs of // elements in an array whose sum is prime using System; class GFG{ // Function to check whether a number // is prime or not public static bool isPrime( int num) { if (num == 0 || num == 1) { return false ; } for ( int i = 2; i * i <= num; i++) { if (num % i == 0) { return false ; } } return true ; } // Function to count total number of pairs // of elements whose sum is prime public static int numPairsWithPrimeSum( int [] arr, int n) { int count = 0; for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { int sum = arr[i] + arr[j]; if (isPrime(sum)) { count++; } } } return count; } // Driver code public static void Main() { int [] arr = { 1, 2, 3, 4, 5 }; int n = arr.Length; Console.Write(numPairsWithPrimeSum(arr, n)); } } // This code is contributed by Nidhi_Biet |
Javascript
<script> // Javascript code to count of pairs // of elements in an array // whose sum is prime // Function to check whether a // number is prime or not function isPrime(num) { if (num == 0 || num == 1) { return false ; } for (let i = 2; i * i <= num; i++) { if (num % i == 0) { return false ; } } return true ; } // Function to count total number of pairs // of elements whose sum is prime function numPairsWithPrimeSum(arr, n) { let count = 0; for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { let sum = arr[i] + arr[j]; if (isPrime(sum)) { count++; } } } return count; } // Driver Code let arr = [ 1, 2, 3, 4, 5 ]; let n = arr.length; document.write(numPairsWithPrimeSum(arr, n)); // This code is contributed by _saurabh_jaiswal </script> |
5
Time Complexity:
Efficient Approach:
Precompute and store the primes by using Sieve of Eratosthenes. Now, for every pair of elements, check whether their sum is prime or not.
Below code is the implementation of the above approach:
C++
// C++ code to find number of pairs // of elements in an array whose // sum is prime #include <bits/stdc++.h> using namespace std; // Function for Sieve Of Eratosthenes bool * sieveOfEratosthenes( int N) { bool * isPrime = new bool [N + 1]; for ( int i = 0; i < N + 1; i++) { isPrime[i] = true ; } isPrime[0] = false ; isPrime[1] = false ; for ( int i = 2; i * i <= N; i++) { if (isPrime[i] == true ) { int j = 2; while (i * j <= N) { isPrime[i * j] = false ; j++; } } } return isPrime; } // Function to count total number of pairs // of elements whose sum is prime int numPairsWithPrimeSum( int * arr, int n) { int N = 2 * 1000000; bool * isPrime = sieveOfEratosthenes(N); int count = 0; for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { int sum = arr[i] + arr[j]; if (isPrime[sum]) { count++; } } } return count; } // Driver Code int main() { int arr[] = { 1, 2, 3, 4, 5 }; int n = sizeof (arr) / sizeof (arr[0]); cout << numPairsWithPrimeSum(arr, n); return 0; } |
Java
// Java code to find number of pairs of // elements in an array whose sum is prime import java.io.*; import java.util.*; class GFG { // Function for Sieve Of Eratosthenes public static boolean [] sieveOfEratosthenes( int N) { boolean [] isPrime = new boolean [N + 1 ]; for ( int i = 0 ; i < N + 1 ; i++) { isPrime[i] = true ; } isPrime[ 0 ] = false ; isPrime[ 1 ] = false ; for ( int i = 2 ; i * i <= N; i++) { if (isPrime[i] == true ) { int j = 2 ; while (i * j <= N) { isPrime[i * j] = false ; j++; } } } return isPrime; } // Function to count total number of pairs // of elements whose sum is prime public static int numPairsWithPrimeSum( int [] arr, int n) { int N = 2 * 1000000 ; boolean [] isPrime = sieveOfEratosthenes(N); int count = 0 ; for ( int i = 0 ; i < n; i++) { for ( int j = i + 1 ; j < n; j++) { int sum = arr[i] + arr[j]; if (isPrime[sum]) { count++; } } } return count; } // Driver code public static void main(String[] args) { int [] arr = { 1 , 2 , 3 , 4 , 5 }; int n = arr.length; System.out.println( numPairsWithPrimeSum(arr, n)); } } |
Python3
# Python3 code to find number of pairs of # elements in an array whose sum is prime # Function for Sieve Of Eratosthenes def sieveOfEratosthenes(N): isPrime = [ True for i in range (N + 1 )] isPrime[ 0 ] = False isPrime[ 1 ] = False i = 2 while ((i * i) < = N): if (isPrime[i]): j = 2 while (i * j < = N): isPrime[i * j] = False j + = 1 i + = 1 return isPrime # Function to count total number of pairs # of elements whose sum is prime def numPairsWithPrimeSum(arr, n): N = 2 * 1000000 isPrime = sieveOfEratosthenes(N) count = 0 for i in range (n): for j in range (i + 1 , n): sum = arr[i] + arr[j] if (isPrime[ sum ]): count + = 1 return count # Driver code if __name__ = = "__main__" : arr = [ 1 , 2 , 3 , 4 , 5 ] n = len (arr) print (numPairsWithPrimeSum(arr, n)) # This code is contributed by rutvik_56 |
C#
// C# code to find number of pairs of // elements in an array whose sum is prime using System; class GFG{ // Function for Sieve Of Eratosthenes public static bool [] sieveOfEratosthenes( int N) { bool [] isPrime = new bool [N + 1]; for ( int i = 0; i < N + 1; i++) { isPrime[i] = true ; } isPrime[0] = false ; isPrime[1] = false ; for ( int i = 2; i * i <= N; i++) { if (isPrime[i] == true ) { int j = 2; while (i * j <= N) { isPrime[i * j] = false ; j++; } } } return isPrime; } // Function to count total number of pairs // of elements whose sum is prime public static int numPairsWithPrimeSum( int [] arr, int n) { int N = 2 * 1000000; bool [] isPrime = sieveOfEratosthenes(N); int count = 0; for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { int sum = arr[i] + arr[j]; if (isPrime[sum]) { count++; } } } return count; } // Driver code public static void Main(String[] args) { int [] arr = { 1, 2, 3, 4, 5 }; int n = arr.Length; Console.WriteLine(numPairsWithPrimeSum(arr, n)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript code to find number of pairs of // elements in an array whose sum is prime // Function for Sieve Of Eratosthenes function sieveOfEratosthenes(N) { let isPrime = Array.from({length: N+1}, (_, i) => 0); for (let i = 0; i < N + 1; i++) { isPrime[i] = true ; } isPrime[0] = false ; isPrime[1] = false ; for (let i = 2; i * i <= N; i++) { if (isPrime[i] == true ) { let j = 2; while (i * j <= N) { isPrime[i * j] = false ; j++; } } } return isPrime; } // Function to count total number of pairs // of elements whose sum is prime function numPairsWithPrimeSum( arr, n) { let N = 2 * 1000000; let isPrime = sieveOfEratosthenes(N); let count = 0; for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { let sum = arr[i] + arr[j]; if (isPrime[sum]) { count++; } } } return count; } // Driver Code let arr = [ 1, 2, 3, 4, 5 ]; let n = arr.length; document.write( numPairsWithPrimeSum(arr, n) ); </script> |
5
Time complexity: O(N^2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!