Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIDivide array in two Subsets such that sum of square of sum...

Divide array in two Subsets such that sum of square of sum of both subsets is maximum

Given an integer array arr[], the task is to divide this array into two non-empty subsets such that the sum of the square of the sum of both the subsets is maximum and sizes of both the subsets must not differ by more than 1.
Examples: 

Input: arr[] = {1, 2, 3} 
Output: 26 
Explanation: 
Sum of Subset Pairs are as follows 
(1)2 + (2 + 3)2 = 26 
(2)2 + (1 + 3)2 = 20 
(3)2 + (1 + 2)2 = 18 
Maximum among these is 26, Therefore the required sum is 26

Input: arr[] = {7, 2, 13, 4, 25, 8} 
Output: 2845 

 

Approach: The task is to maximize the sum of a2 + b2 where a and b are the sum of the two subsets and a + b = C (constant), i.e., the sum of the entire array. The maximum sum can be achieved by sorting the array and dividing the first N/2 – 1 smaller elements in one subset and the rest N/2 + 1 elements in the other subset. In this way, the sum can be maximized while keeping the difference in size at most 1.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum sum of the
// square of the sum of two subsets of an array
int maxSquareSubsetSum(int* A, int N)
{
    // Initialize variables to store
    // the sum of subsets
    int sub1 = 0, sub2 = 0;
 
    // Sorting the array
    sort(A, A + N);
 
    // Loop through the array
    for (int i = 0; i < N; i++) {
 
        // Sum of the first subset
        if (i < (N / 2) - 1)
            sub1 += A[i];
 
        // Sum of the second subset
        else
            sub2 += A[i];
    }
 
    // Return the maximum sum of
    // the square of the sum of subsets
    return sub1 * sub1 + sub2 * sub2;
}
 
// Driver code
int main()
{
    int arr[] = { 7, 2, 13, 4, 25, 8 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << maxSquareSubsetSum(arr, N);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
    // Function to return the maximum sum of the
    // square of the sum of two subsets of an array
    static int maxSquareSubsetSum(int []A, int N)
    {
        // Initialize variables to store
        // the sum of subsets
        int sub1 = 0, sub2 = 0;
     
        // Sorting the array
        Arrays.sort(A);
     
        // Loop through the array
        for (int i = 0; i < N; i++)
        {
     
            // Sum of the first subset
            if (i < (N / 2) - 1)
                sub1 += A[i];
     
            // Sum of the second subset
            else
                sub2 += A[i];
        }
     
        // Return the maximum sum of
        // the square of the sum of subsets
        return sub1 * sub1 + sub2 * sub2;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 7, 2, 13, 4, 25, 8 };
        int N = arr.length;
     
        System.out.println(maxSquareSubsetSum(arr, N));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the maximum sum of the
# square of the sum of two subsets of an array
def maxSquareSubsetSum(A, N) :
 
    # Initialize variables to store
    # the sum of subsets
    sub1 = 0; sub2 = 0;
     
    # Sorting the array
    A.sort();
 
    # Loop through the array
    for i in range(N) :
 
        # Sum of the first subset
        if (i < (N // 2) - 1) :
            sub1 += A[i];
 
        # Sum of the second subset
        else :
            sub2 += A[i];
 
    # Return the maximum sum of
    # the square of the sum of subsets
    return sub1 * sub1 + sub2 * sub2;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 7, 2, 13, 4, 25, 8 ];
    N = len(arr);
 
    print(maxSquareSubsetSum(arr, N));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the maximum sum of the
    // square of the sum of two subsets of an array
    static int maxSquareSubsetSum(int []A, int N)
    {
        // Initialize variables to store
        // the sum of subsets
        int sub1 = 0, sub2 = 0;
     
        // Sorting the array
        Array.Sort(A);
     
        // Loop through the array
        for (int i = 0; i < N; i++)
        {
     
            // Sum of the first subset
            if (i < (N / 2) - 1)
                sub1 += A[i];
     
            // Sum of the second subset
            else
                sub2 += A[i];
        }
     
        // Return the maximum sum of
        // the square of the sum of subsets
        return sub1 * sub1 + sub2 * sub2;
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 7, 2, 13, 4, 25, 8 };
        int N = arr.Length;
     
        Console.WriteLine(maxSquareSubsetSum(arr, N));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
// javascript implementation of the approach
// Creating the bblSort function
 function bblSort(arr){
      
 for(var i = 0; i < arr.length; i++){
      
   // Last i elements are already in place 
   for(var j = 0; j < ( arr.length - i -1 ); j++){
        
     // Checking if the item at present iteration
     // is greater than the next iteration
     if(arr[j] > arr[j+1]){
          
       // If the condition is true then swap them
       var temp = arr[j]
       arr[j] = arr[j + 1]
       arr[j+1] = temp
     }
   }
 }
 // return the sorted array
 return arr;
}
    // Function to return the maximum sum of the
    // square of the sum of two subsets of an array
    function maxSquareSubsetSum(A , N) {
        // Initialize variables to store
        // the sum of subsets
        var sub1 = 0, sub2 = 0;
 
        // Sorting the array
        A = bblSort(A);
 
        // Loop through the array
        for (i = 0; i < N; i++) {
 
            // Sum of the first subset
            if (i < (N / 2) - 1)
                sub1 += A[i];
 
            // Sum of the second subset
            else
                sub2 += A[i];
        }
 
        // Return the maximum sum of
        // the square of the sum of subsets
        return sub1 * sub1 + sub2 * sub2;
    }
 
    // Driver code
     
        var arr = [ 7, 2, 13, 4, 25, 8 ];
        var N = arr.length;
 
        document.write(maxSquareSubsetSum(arr, N));
 
// This code is contributed by todaysgaurav
</script>


Output: 

2845

 

Time Complexity: O(N*log(N))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments