Friday, January 10, 2025
Google search engine
HomeData Modelling & AINumber of unique permutations starting with 1 of a Binary String

Number of unique permutations starting with 1 of a Binary String

Given a binary string composed of 0’s and 1’s. The task is to find the number of unique permutation of the string which starts with 1. 
Note: Since the answer can be very large, print the answer under modulo 109 + 7.
Examples: 
 

Input : str ="10101001001"
Output : 210

Input : str ="101110011"
Output : 56

 

The idea is to first find the count of 1’s and the count of 0’s in the given string. Now let us consider that the string is of length L    and the string consists of at least one 1. Let the number of 1’s be n    and the number of 0’s be m    . Out of n number of 1’s we have to place one 1 at the beginning of the string so we have n-1 1’s left and m 0’s we have to permute these (n-1) 1’s and m 0’s in length (L-1) of the string. 
Therefore, the number of permutation will be: 
 

(L-1)! / ((n-1)!*(m)!)

Below is the implementation of the above idea: 
 

C++




// C++ program to find number of unique permutations
// of a binary string starting with 1
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 1000003
#define mod 1000000007
 
// Array to store factorial of i at
// i-th index
long long fact[MAX];
 
// Precompute factorials under modulo mod
// upto MAX
void factorial()
{
    // factorial of 0 is 1
    fact[0] = 1;
 
    for (int i = 1; i < MAX; i++) {
        fact[i] = (fact[i - 1] * i) % mod;
    }
}
 
// Iterative Function to calculate (x^y)%p in O(log y)
long long power(long long x, long long y, long long p)
{
    long long res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or
    // equal to p
 
    while (y > 0) {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to find the modular inverse
long long inverse(int n)
{
 
    return power(n, mod - 2, mod);
}
 
// Function to find the number of permutation
// starting with 1 of a binary string
int countPermutation(string s)
{
    // Generate factorials upto MAX
    factorial();
 
    int length = s.length(), num1 = 0, num0;
    long long count = 0;
 
    // find number of 1's
    for (int i = 0; i < length; i++) {
        if (s[i] == '1')
            num1++;
    }
 
    // number of 0's
    num0 = length - num1;
 
    // Find the number of permutation of
    // string starting with 1 using the formulae:
    // (L-1)! / ((n-1)!*(m)!)
    count = (fact[length - 1] *
            inverse((fact[num1 - 1] *
                    fact[num0]) % mod)) % mod;
 
    return count;
}
 
// Driver code
int main()
{
    string str = "10101001001";
 
    cout << countPermutation(str);
 
    return 0;
}


Java




// Java program to find number of unique permutations
// of a binary string starting with 1
   
public class Improve {
     
    final static int MAX = 1000003 ;
    final static int mod = 1000000007 ;
     
    // Array to store factorial of i at
    // i-th index
    static long fact[] = new long [MAX];
     
    // Pre-compute factorials under modulo mod
    // upto MAX
    static void factorial()
    {
        // factorial of 0 is 1
        fact[0] = 1;
       
        for (int i = 1; i < MAX; i++) {
            fact[i] = (fact[i - 1] * i) % mod;
        }
    }
       
    // Iterative Function to calculate (x^y)%p in O(log y)
    static long power(long x, long y, long p)
    {
        long res = 1; // Initialize result
       
        x = x % p; // Update x if it is more than or
        // equal to p
       
        while (y > 0) {
            // If y is odd, multiply x with result
            if (y % 2 != 0)
                res = (res * x) % p;
       
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
       
    // Function to find the modular inverse
    static long inverse(int n)
    {
       
        return power(n, mod - 2, mod);
    }
       
    // Function to find the number of permutation
    // starting with 1 of a binary string
    static int countPermutation(String s)
    {
        // Generate factorials upto MAX
        factorial();
       
        int length = s.length(), num1 = 0, num0;
        long count = 0;
       
        // find number of 1's
        for (int i = 0; i < length; i++) {
            if (s.charAt(i) == '1')
                num1++;
        }
       
        // number of 0's
        num0 = length - num1;
       
        // Find the number of permutation of
        // string starting with 1 using the formulae:
        // (L-1)! / ((n-1)!*(m)!)
        count = (fact[length - 1] * 
                inverse((int) ((fact[num1 - 1] * 
                        fact[num0]) % mod))) % mod;
       
        return (int) count;
    }
     
    // Driver code
    public static void main(String args[])
    {
           String str = "10101001001";
            
           System.out.println(countPermutation(str));
    }
    // This Code is contributed by ANKITRAI1
}


Python 3




# Python 3 program to find number
# of unique permutations of a
# binary string starting with 1
MAX = 1000003
mod = 1000000007
 
# Array to store factorial of
# i at i-th index
fact = [0] * MAX
 
# Precompute factorials under
# modulo mod upto MAX
def factorial():
     
    # factorial of 0 is 1
    fact[0] = 1
 
    for i in range(1, MAX):
        fact[i] = (fact[i - 1] * i) % mod
 
# Iterative Function to calculate
# (x^y)%p in O(log y)
def power(x, y, p):
     
    res = 1 # Initialize result
 
    x = x % p # Update x if it is
              # more than or equal to p
 
    while (y > 0) :
         
        # If y is odd, multiply
        # x with result
        if (y & 1):
            res = (res * x) % p
 
        # y must be even now
        y = y >> 1 # y = y/2
        x = (x * x) % p
     
    return res
 
# Function to find the modular inverse
def inverse( n):
    return power(n, mod - 2, mod)
 
# Function to find the number of
# permutation starting with 1 of
# a binary string
def countPermutation(s):
     
    # Generate factorials upto MAX
    factorial()
 
    length = len(s)
    num1 = 0
    count = 0
 
    # find number of 1's
    for i in range(length) :
        if (s[i] == '1'):
            num1 += 1
             
    # number of 0's
    num0 = length - num1
 
    # Find the number of permutation
    # of string starting with 1 using
    # the formulae: (L-1)! / ((n-1)!*(m)!)
    count = (fact[length - 1] *
            inverse((fact[num1 - 1] *
                     fact[num0]) % mod)) % mod
 
    return count
 
# Driver code
if __name__ =="__main__":
    s = "10101001001"
 
    print(countPermutation(s))
 
# This code is contributed
# by ChitraNayal


C#




// C# program to find number of
// unique permutations of a
// binary string starting with 1
using System;
     
class GFG
{
static int MAX = 1000003 ;
static int mod = 1000000007 ;
 
// Array to store factorial
// of i at i-th index
static long []fact = new long [MAX];
 
// Pre-compute factorials under
// modulo mod upto MAX
static void factorial()
{
    // factorial of 0 is 1
    fact[0] = 1;
     
    for (int i = 1; i < MAX; i++)
    {
        fact[i] = (fact[i - 1] * i) % mod;
    }
}
     
// Iterative Function to calculate
// (x^y)%p in O(log y)
static long power(long x,
                  long y, long p)
{
    long res = 1; // Initialize result
     
    x = x % p; // Update x if it is more
               // than or equal to p
     
    while (y > 0)
    {
        // If y is odd, multiply
        // x with result
        if (y % 2 != 0)
            res = (res * x) % p;
     
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
     
// Function to find the modular inverse
static long inverse(int n)
{
    return power(n, mod - 2, mod);
}
     
// Function to find the number of
// permutation starting with 1 of
// a binary string
static int countPermutation(string s)
{
    // Generate factorials upto MAX
    factorial();
     
    int length = s.Length, num1 = 0, num0;
    long count = 0;
     
    // find number of 1's
    for (int i = 0; i < length; i++)
    {
        if (s[i] == '1')
            num1++;
    }
     
    // number of 0's
    num0 = length - num1;
     
    // Find the number of permutation
    // of string starting with 1 using
    // the formulae: (L-1)! / ((n-1)!*(m)!)
    count = (fact[length - 1] *
             inverse((int) ((fact[num1 - 1] *
                    fact[num0]) % mod))) % mod;
     
    return (int) count;
}
 
// Driver code
public static void Main()
{
    string str = "10101001001";
         
    Console.WriteLine(countPermutation(str));
}
}
 
// This code is contributed
// by anuj_67


Javascript




<script>
 
// Javascript program to find number of unique permutations
// of a binary string starting with 1
 
var MAX = 1000003
var mod = 100000007
 
// Array to store factorial of i at
// i-th index
var fact = Array(MAX);
 
// Precompute factorials under modulo mod
// upto MAX
function factorial()
{
    // factorial of 0 is 1
    fact[0] = 1;
 
    for (var i = 1; i < MAX; i++) {
        fact[i] = (fact[i - 1] * i) % mod;
    }
}
 
// Iterative Function to calculate (x^y)%p in O(log y)
function power(x, y, p)
{
    var res = 1; // Initialize result
 
    x = x % p; // Update x if it is more than or
    // equal to p
 
    while (y > 0) {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Function to find the modular inverse
function inverse(n)
{
 
    return power(n, mod - 2, mod);
}
 
// Function to find the number of permutation
// starting with 1 of a binary string
function countPermutation(s)
{
    // Generate factorials upto MAX
    factorial();
 
    var length = s.length, num1 = 0, num0;
    var count = 0;
 
    // find number of 1's
    for (var i = 0; i < length; i++) {
        if (s[i] == '1')
            num1++;
    }
 
    // number of 0's
    num0 = length - num1;
 
    // Find the number of permutation of
    // string starting with 1 using the formulae:
    // (L-1)! / ((n-1)!*(m)!)
    count = (fact[length - 1] *
            inverse((fact[num1 - 1] *
                    fact[num0]) % mod)) % mod;
 
    return count;
}
 
// Driver code
var str = "10101001001";
document.write( countPermutation(str));
 
</script>


Output: 

210

 

Time Complexity: O(n), where n is the length of the string.

Auxilitary Space Complexity : O(n)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments