Given four integers p, q, r, and s. Two players are playing a game where both the players hit a target and the first player who hits the target wins the game. The probability of the first player hitting the target is p / q and that of the second player hitting the target is r / s. The task is to find the probability of the first player winning the game.
Examples:
Input: p = 1, q = 4, r = 3, s = 4
Output: 0.307692308Input: p = 1, q = 2, r = 1, s = 2
Output: 0.666666667
Approach: The probability of the first player hitting the target is p / q and missing the target is 1 – p / q.
The probability of the second player hitting the target is r / s and missing the target is 1 – r / s.
Let the first player be x and the second player is y.
So the total probability will be x won + (x lost * y lost * x won) + (x lost * y lost * x lost * y lost * x won) + … so on.
Because x can win at any turn, it’s an infinite sequence.
Let t = (1 – p / q) * (1 – r / s). Here t < 1 as p / q and r / s are always <1.
So the series will become, p / q + (p / q) * t + (p / q) * t2 + …
This is an infinite GP series with a common ratio of less than 1 and its sum will be (p / q) / (1 – t).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the probability of the winner double find_probability( double p, double q, double r, double s) { double t = (1 - p / q) * (1 - r / s); double ans = (p / q) / (1 - t); return ans; } // Driver Code int main() { double p = 1, q = 2, r = 1, s = 2; // Will print 9 digits after the decimal point cout << fixed << setprecision(9) << find_probability(p, q, r, s); return 0; } |
Java
// Java implementation of the approach import java.util.*; import java.text.DecimalFormat; class solution { // Function to return the probability of the winner static double find_probability( double p, double q, double r, double s) { double t = ( 1 - p / q) * ( 1 - r / s); double ans = (p / q) / ( 1 - t); return ans; } // Driver Code public static void main(String args[]) { double p = 1 , q = 2 , r = 1 , s = 2 ; // Will print 9 digits after the decimal point DecimalFormat dec = new DecimalFormat( "#0.000000000" ); System.out.println(dec.format(find_probability(p, q, r, s))); } } // This code is contributed by // Surendra_Gangwar |
Python3
# Python3 implementation of the approach # Function to return the probability # of the winner def find_probability(p, q, r, s) : t = ( 1 - p / q) * ( 1 - r / s) ans = (p / q) / ( 1 - t); return round (ans, 9 ) # Driver Code if __name__ = = "__main__" : p, q, r, s = 1 , 2 , 1 , 2 # Will print 9 digits after # the decimal point print (find_probability(p, q, r, s)) # This code is contributed by Ryuga |
C#
// C# implementation of the approach using System; class GFG { // Function to return the probability of the winner static double find_probability( double p, double q, double r, double s) { double t = (1 - p / q) * (1 - r / s); double ans = (p / q) / (1 - t); return ans; } // Driver Code public static void Main() { double p = 1, q = 2, r = 1, s = 2; Console.WriteLine(find_probability(p, q, r, s)); } } // This code is contributed by // anuj_67.. |
PHP
<?php // PHP implementation of the approach // Function to return the probability // of the winner function find_probability( $p , $q , $r , $s ) { $t = (1 - $p / $q ) * (1 - $r / $s ); $ans = ( $p / $q ) / (1 - $t ); return $ans ; } // Driver Code $p = 1; $q = 2; $r = 1; $s = 2; // Will print 9 digits after // the decimal point $res = find_probability( $p , $q , $r , $s ); $update = number_format( $res , 7); echo $update ; // This code is contributed by Rajput-Ji ?> |
Javascript
<script> // Javascript implementation of the approach // Function to return the probability of the winner function find_probability(p, q, r, s) { var t = (1 - p / q) * (1 - r / s); var ans = (p / q) / (1 - t); return ans; } // Driver Code var p = 1, q = 2, r = 1, s = 2; // Will print 9 digits after the decimal point document.write( find_probability(p, q, r, s).toFixed(9)); </script> |
0.666666667
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!