Given two integers L and R, the task is to find the minimum difference between any two prime numbers in the range [L, R].
Examples:
Input: L = 21, R = 50
Output: 2
(29, 31) and (41, 43) are the only valid pairs
that give the minimum difference.Input: L = 1, R = 11
Output: 1
The difference between (2, 3) is minimum.
Approach:
- Find all the prime numbers upto R using Sieve of Eratosthenes.
- Now starting from L, find the difference between any two prime numbers within the range and update minimum difference so far.
- If the number of primes in the range were < 2 then print -1.
- Else print the minimum difference.
Below is the implementation of the above approach:
C++14
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; const int sz = 1e5; bool isPrime[sz + 1]; // Function for Sieve of Eratosthenes void sieve() { memset (isPrime, true , sizeof (isPrime)); isPrime[0] = isPrime[1] = false ; for ( int i = 2; i * i <= sz; i++) { if (isPrime[i]) { for ( int j = i * i; j < sz; j += i) { isPrime[j] = false ; } } } } // Function to return the minimum difference // between any two prime numbers // from the given range [L, R] int minDifference( int L, int R) { // Find the first prime from the range int fst = 0; for ( int i = L; i <= R; i++) { if (isPrime[i]) { fst = i; break ; } } // Find the second prime from the range int snd = 0; for ( int i = fst + 1; i <= R; i++) { if (isPrime[i]) { snd = i; break ; } } // If the number of primes in // the given range is < 2 if (snd == 0) return -1; // To store the minimum difference between // two consecutive primes from the range int diff = snd - fst; // Range left to check for primes int left = snd + 1; int right = R; // For every integer in the range for ( int i = left; i <= right; i++) { // If the current integer is prime if (isPrime[i]) { // If the difference between i // and snd is minimum so far if (i - snd <= diff) { fst = snd; snd = i; diff = snd - fst; } } } return diff; } // Driver code int main() { // Generate primes sieve(); int L = 21, R = 50; cout << minDifference(L, R); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static int sz = ( int ) 1e5; static boolean []isPrime = new boolean [sz + 1 ]; // Function for Sieve of Eratosthenes static void sieve() { Arrays.fill(isPrime, true ); isPrime[ 0 ] = isPrime[ 1 ] = false ; for ( int i = 2 ; i * i <= sz; i++) { if (isPrime[i]) { for ( int j = i * i; j < sz; j += i) { isPrime[j] = false ; } } } } // Function to return the minimum difference // between any two prime numbers // from the given range [L, R] static int minDifference( int L, int R) { // Find the first prime from the range int fst = 0 ; for ( int i = L; i <= R; i++) { if (isPrime[i]) { fst = i; break ; } } // Find the second prime from the range int snd = 0 ; for ( int i = fst + 1 ; i <= R; i++) { if (isPrime[i]) { snd = i; break ; } } // If the number of primes in // the given range is < 2 if (snd == 0 ) return - 1 ; // To store the minimum difference between // two consecutive primes from the range int diff = snd - fst; // Range left to check for primes int left = snd + 1 ; int right = R; // For every integer in the range for ( int i = left; i <= right; i++) { // If the current integer is prime if (isPrime[i]) { // If the difference between i // and snd is minimum so far if (i - snd <= diff) { fst = snd; snd = i; diff = snd - fst; } } } return diff; } // Driver code public static void main(String []args) { // Generate primes sieve(); int L = 21 , R = 50 ; System.out.println(minDifference(L, R)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach from math import sqrt sz = int ( 1e5 ); isPrime = [ True ] * (sz + 1 ); # Function for Sieve of Eratosthenes def sieve() : isPrime[ 0 ] = isPrime[ 1 ] = False ; for i in range ( 2 , int (sqrt(sz)) + 1 ) : if (isPrime[i]) : for j in range (i * i, sz, i) : isPrime[j] = False ; # Function to return the minimum difference # between any two prime numbers # from the given range [L, R] def minDifference(L, R) : # Find the first prime from the range fst = 0 ; for i in range (L, R + 1 ) : if (isPrime[i]) : fst = i; break ; # Find the second prime from the range snd = 0 ; for i in range (fst + 1 , R + 1 ) : if (isPrime[i]) : snd = i; break ; # If the number of primes in # the given range is < 2 if (snd = = 0 ) : return - 1 ; # To store the minimum difference between # two consecutive primes from the range diff = snd - fst; # Range left to check for primes left = snd + 1 ; right = R; # For every integer in the range for i in range (left, right + 1 ) : # If the current integer is prime if (isPrime[i]) : # If the difference between i # and snd is minimum so far if (i - snd < = diff) : fst = snd; snd = i; diff = snd - fst; return diff; # Driver code if __name__ = = "__main__" : # Generate primes sieve(); L = 21 ; R = 50 ; print (minDifference(L, R)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { static int sz = ( int ) 1e5; static Boolean []isPrime = new Boolean [sz + 1]; // Function for Sieve of Eratosthenes static void sieve() { for ( int i = 2; i< sz + 1; i++) isPrime[i] = true ; for ( int i = 2; i * i <= sz; i++) { if (isPrime[i]) { for ( int j = i * i; j < sz; j += i) { isPrime[j] = false ; } } } } // Function to return the minimum difference // between any two prime numbers // from the given range [L, R] static int minDifference( int L, int R) { // Find the first prime from the range int fst = 0; for ( int i = L; i <= R; i++) { if (isPrime[i]) { fst = i; break ; } } // Find the second prime from the range int snd = 0; for ( int i = fst + 1; i <= R; i++) { if (isPrime[i]) { snd = i; break ; } } // If the number of primes in // the given range is < 2 if (snd == 0) return -1; // To store the minimum difference between // two consecutive primes from the range int diff = snd - fst; // Range left to check for primes int left = snd + 1; int right = R; // For every integer in the range for ( int i = left; i <= right; i++) { // If the current integer is prime if (isPrime[i]) { // If the difference between i // and snd is minimum so far if (i - snd <= diff) { fst = snd; snd = i; diff = snd - fst; } } } return diff; } // Driver code public static void Main(String []args) { // Generate primes sieve(); int L = 21, R = 50; Console.WriteLine(minDifference(L, R)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation of the approach const sz = 1e5; let isPrime = new Array(sz + 1); // Function for Sieve of Eratosthenes function sieve() { isPrime.fill( true ); isPrime[0] = isPrime[1] = false ; for (let i = 2; i * i <= sz; i++) { if (isPrime[i]) { for (let j = i * i; j < sz; j += i) { isPrime[j] = false ; } } } } // Function to return the minimum difference // between any two prime numbers // from the given range [L, R] function minDifference(L, R) { // Find the first prime from the range let fst = 0; for (let i = L; i <= R; i++) { if (isPrime[i]) { fst = i; break ; } } // Find the second prime from the range let snd = 0; for (let i = fst + 1; i <= R; i++) { if (isPrime[i]) { snd = i; break ; } } // If the number of primes in // the given range is < 2 if (snd == 0) return -1; // To store the minimum difference between // two consecutive primes from the range let diff = snd - fst; // Range left to check for primes let left = snd + 1; let right = R; // For every integer in the range for (let i = left; i <= right; i++) { // If the current integer is prime if (isPrime[i]) { // If the difference between i // and snd is minimum so far if (i - snd <= diff) { fst = snd; snd = i; diff = snd - fst; } } } return diff; } // Driver code // Generate primes sieve(); let L = 21, R = 50; document.write(minDifference(L, R)); // This code is contributed by _saurabh_jaiswal </script> |
2
Time Complexity: O((R – L) + sqrt(105))
Auxiliary Space: O(105)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!