Given an array arr[] of integers, the task is to count the number of divisors of product of all the elements from given array.
Examples:
Input: arr[] = {3, 5, 7}
Output: 8
3 * 5 * 7 = 105.
Factors of 105 are 1, 3, 5, 7, 15, 21, 35 and 105.
Input: arr[] = {5, 5}
Output: 3
5 * 5 = 25.
Factors of 25 are 1, 5 and 25.
A simple solution is to multiply all the N integers and count the number of divisors of the product. However, if the product goes above 107 then we can’t use this approach because numbers greater than 10^7 can’t be prime factorized efficiently using the sieve approach.
An efficient solution does not involve the calculation of the product of all the numbers. We already know that when we multiply 2 numbers, powers get added. For example,
A = 27, B = 23
A * B = 210
Therefore, we need to maintain the count of every power in the product of numbers which can be done by adding counts of powers from every element.
Hence, to compute the number of divisors, the main focus is on the count of primes encountered. So we will stress only on the primes encountered in the product without bothering about the product itself. While traversing through the array, we keep the count of every prime encountered.
Number of divisors = (p1 + 1) * (p2 + 1) * (p3 + 1) * … * (pn + 1)
where p1, p2, p3, …, pn are the primes encountered in the prime factorization of all the elements.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define MAX 10000002 using namespace std; int prime[MAX]; // Array to store count of primes int prime_count[MAX]; // Function to store smallest prime factor // of every number till MAX void sieve() { memset (prime, 0, sizeof (prime)); prime[0] = prime[1] = 1; for ( int i = 2; i * i < MAX; i++) { if (prime[i] == 0) { for ( int j = i * 2; j < MAX; j += i) { if (prime[j] == 0) prime[j] = i; } } } for ( int i = 2; i < MAX; i++) { // If the number is prime then it's // smallest prime factor is the number // itself if (prime[i] == 0) prime[i] = i; } } // Function to return the count of the divisors for // the product of all the numbers from the array long long numberOfDivisorsOfProduct( const int * arr, int n) { memset (prime_count, 0, sizeof (prime_count)); for ( int i = 0; i < n; i++) { int temp = arr[i]; while (temp != 1) { // Increase the count of prime // encountered prime_count[prime[temp]]++; temp = temp / prime[temp]; } } long long ans = 1; // Multiplying the count of primes // encountered for ( int i = 2; i < MAX; i++) { ans = ans * (prime_count[i] + 1); } return ans; } // Driver code int main() { sieve(); int arr[] = { 2, 4, 6 }; int n = sizeof (arr) / sizeof (arr[0]); cout << numberOfDivisorsOfProduct(arr, n); return 0; } |
Java
// Java implementation of the approach import java.util.Arrays; // Java implementation of the approach class GFG { final static int MAX = 10000002 ; static int prime[] = new int [MAX]; // Array to store count of primes static int prime_count[] = new int [MAX]; // Function to store smallest prime factor // of every number till MAX static void sieve() { Arrays.fill(prime, 0 , MAX, 0 ); prime[ 0 ] = prime[ 1 ] = 1 ; for ( int i = 2 ; i * i < MAX; i++) { if (prime[i] == 0 ) { for ( int j = i * 2 ; j < MAX; j += i) { if (prime[j] == 0 ) { prime[j] = i; } } } } for ( int i = 2 ; i < MAX; i++) { // If the number is prime then it's // smallest prime factor is the number // itself if (prime[i] == 0 ) { prime[i] = i; } } } // Function to return the count of the divisors for // the product of all the numbers from the array static long numberOfDivisorsOfProduct( int [] arr, int n) { Arrays.fill(prime_count, 0 , MAX, 0 ); for ( int i = 0 ; i < n; i++) { int temp = arr[i]; while (temp != 1 ) { // Increase the count of prime // encountered prime_count[prime[temp]]++; temp = temp / prime[temp]; } } long ans = 1 ; // Multiplying the count of primes // encountered for ( int i = 2 ; i < MAX; i++) { ans = ans * (prime_count[i] + 1 ); } return ans; } // Driver code public static void main(String[] args) { sieve(); int arr[] = { 2 , 4 , 6 }; int n = arr.length; System.out.println(numberOfDivisorsOfProduct(arr, n)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach MAX = 10000002 prime = [ 0 ] * ( MAX ) MAX_sqrt = int ( MAX * * ( 0.5 )) # Array to store count of primes prime_count = [ 0 ] * ( MAX ) # Function to store smallest prime # factor in prime[] def sieve(): prime[ 0 ], prime[ 1 ] = 1 , 1 for i in range ( 2 , MAX_sqrt): if prime[i] = = 0 : for j in range (i * 2 , MAX , i): if prime[j] = = 0 : prime[j] = i for i in range ( 2 , MAX ): # If the number is prime then it's # the smallest prime factor is the # number itself if prime[i] = = 0 : prime[i] = i # Function to return the count of the divisors for # the product of all the numbers from the array def numberOfDivisorsOfProduct(arr, n): for i in range ( 0 , n): temp = arr[i] while temp ! = 1 : # Increase the count of prime # encountered prime_count[prime[temp]] + = 1 temp = temp / / prime[temp] ans = 1 # Multiplying the count of primes # encountered for i in range ( 2 , len (prime_count)): ans = ans * (prime_count[i] + 1 ) return ans # Driver code if __name__ = = "__main__" : sieve() arr = [ 2 , 4 , 6 ] n = len (arr) print (numberOfDivisorsOfProduct(arr, n)) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the approach using System; public class GFG { static int MAX = 1000000; static int []prime = new int [MAX]; // Array to store count of primes static int []prime_count = new int [MAX]; // Function to store smallest prime factor // of every number till MAX static void sieve() { for ( int i =0;i<MAX;i++) prime[i]=0; prime[0] = prime[1] = 1; for ( int i = 2; i * i < MAX; i++) { if (prime[i] == 0) { for ( int j = i * 2; j < MAX; j += i) { if (prime[j] == 0) { prime[j] = i; } } } } for ( int i = 2; i < MAX; i++) { // If the number is prime then it's // smallest prime factor is the number // itself if (prime[i] == 0) { prime[i] = i; } } } // Function to return the count of the divisors for // the product of all the numbers from the array static long numberOfDivisorsOfProduct( int [] arr, int n) { for ( int i =0;i<MAX;i++) prime_count[i]=0; for ( int i = 0; i < n; i++) { int temp = arr[i]; while (temp != 1) { // Increase the count of prime // encountered prime_count[prime[temp]]++; temp = temp / prime[temp]; } } long ans = 1; // Multiplying the count of primes // encountered for ( int i = 2; i < MAX; i++) { ans = ans * (prime_count[i] + 1); } return ans; } // Driver code public static void Main() { sieve(); int []arr = {2, 4, 6}; int n = arr.Length; Console.Write(numberOfDivisorsOfProduct(arr, n)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach let MAX = 10000002 let prime = new Array(MAX); // Array to store count of primes let prime_count = new Array(MAX); // Function to store smallest prime factor // of every number till MAX function sieve() { prime.fill(0) prime[0] = prime[1] = 1; for (let i = 2; i * i < MAX; i++) { if (prime[i] == 0) { for (let j = i * 2; j < MAX; j += i) { if (prime[j] == 0) prime[j] = i; } } } for (let i = 2; i < MAX; i++) { // If the number is prime then it's // smallest prime factor is the number // itself if (prime[i] == 0) prime[i] = i; } } // Function to return the count of the divisors for // the product of all the numbers from the array function numberOfDivisorsOfProduct(arr, n) { prime_count.fill(0) for (let i = 0; i < n; i++) { let temp = arr[i]; while (temp != 1) { // Increase the count of prime // encountered prime_count[prime[temp]]++; temp = temp / prime[temp]; } } let ans = 1; // Multiplying the count of primes // encountered for (let i = 2; i < MAX; i++) { ans = ans * (prime_count[i] + 1); } return ans; } // Driver code sieve(); let arr = [2, 4, 6]; let n = arr.length; document.write(numberOfDivisorsOfProduct(arr, n)); // This code is contributed by gfgking </script> |
10
In a memory efficient approach, the array can be replaced by an unordered map to store count of only those primes which have been encountered.
Below is the implementation of the memory efficient approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define MAX 10000002 using namespace std; int prime[MAX]; // Map to store count of primes unordered_map< int , int > prime_count; // Function to store smallest prime factor // in prime[] void sieve() { memset (prime, 0, sizeof (prime)); prime[0] = prime[1] = 1; for ( int i = 2; i * i < MAX; i++) { if (prime[i] == 0) { for ( int j = i * 2; j < MAX; j += i) { if (prime[j] == 0) prime[j] = i; } } } for ( int i = 2; i < MAX; i++) { // If the number is prime then // it's the smallest prime factor // is the number itself if (prime[i] == 0) prime[i] = i; } } // Function to return the count of the divisors for // the product of all the numbers from the array long long numberOfDivisorsOfProduct( const int * arr, int n) { for ( int i = 0; i < n; i++) { int temp = arr[i]; while (temp != 1) { // Increase the count of prime // encountered prime_count[prime[temp]]++; temp = temp / prime[temp]; } } long long ans = 1; // Multiplying the count of primes // encountered unordered_map< int , int >::iterator it; for (it = prime_count.begin(); it != prime_count.end(); it++) { ans = ans * (it->second + 1); } return ans; } // Driver code int main() { sieve(); int arr[] = { 3, 5, 7 }; int n = sizeof (arr) / sizeof (arr[0]); cout << numberOfDivisorsOfProduct(arr, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static int MAX = 10000002 ; static int []prime = new int [MAX]; // Map to store count of primes static Map<Integer, Integer> prime_count = new HashMap<>(); // Function to store smallest prime factor // in prime[] static void sieve() { prime[ 0 ] = 1 ; prime[ 1 ] = 1 ; for ( int i = 2 ; i * i < MAX; i++) { if (prime[i] == 0 ) { for ( int j = i * 2 ; j < MAX; j += i) { if (prime[j] == 0 ) prime[j] = i; } } } for ( int i = 2 ; i < MAX; i++) { // If the number is prime then // it's the smallest prime factor // is the number itself if (prime[i] == 0 ) prime[i] = i; } } // Function to return the count of the divisors for // the product of all the numbers from the array static long numberOfDivisorsOfProduct( int arr[], int n) { for ( int i = 0 ; i < n; i++) { int temp = arr[i]; while (temp != 1 ) { // Increase the count of prime // encountered if (!prime_count.containsKey(prime[temp])) { prime_count.put(prime[temp], 0 ); } prime_count.put(prime[temp], prime_count.get(prime[temp]) + 1 ); temp = temp / prime[temp]; } } long ans = 1 ; // Multiplying the count of primes // encountered for (Map.Entry<Integer,Integer> it : prime_count.entrySet()) { ans = ans * (it.getValue() + 1 ); } return ans; } // Driver code public static void main(String []args) { sieve(); int arr[] = new int [] { 3 , 5 , 7 }; int n = arr.length; System.out.print(numberOfDivisorsOfProduct(arr, n)); } } // This code is contributed by rutvik_56. |
Python3
# Python3 implementation of the approach from collections import defaultdict MAX = 10000002 prime = [ 0 ] * ( MAX ) MAX_sqrt = int ( MAX * * ( 0.5 )) # Map to store count of primes prime_count = defaultdict( lambda : 0 ) # Function to store smallest prime # factor in prime[] def sieve(): prime[ 0 ], prime[ 1 ] = 1 , 1 for i in range ( 2 , MAX_sqrt): if prime[i] = = 0 : for j in range (i * 2 , MAX , i): if prime[j] = = 0 : prime[j] = i for i in range ( 2 , MAX ): # If the number is prime then # it's the smallest prime factor # is the number itself if prime[i] = = 0 : prime[i] = i # Function to return the count of the divisors for # the product of all the numbers from the array def numberOfDivisorsOfProduct(arr, n): for i in range ( 0 , n): temp = arr[i] while temp ! = 1 : # Increase the count of prime # encountered prime_count[prime[temp]] + = 1 temp = temp / / prime[temp] ans = 1 # Multiplying the count of primes # encountered for key in prime_count: ans = ans * (prime_count[key] + 1 ) return ans # Driver code if __name__ = = "__main__" : sieve() arr = [ 3 , 5 , 7 ] n = len (arr) print (numberOfDivisorsOfProduct(arr, n)) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the approach using System; using System.Collections; using System.Collections.Generic; class GFG { static int MAX = 10000002; static int []prime = new int [MAX]; // Map to store count of primes static Dictionary< int , int > prime_count = new Dictionary< int , int >(); // Function to store smallest prime factor // in prime[] static void sieve() { prime[0] = 1; prime[1] = 1; for ( int i = 2; i * i < MAX; i++) { if (prime[i] == 0) { for ( int j = i * 2; j < MAX; j += i) { if (prime[j] == 0) prime[j] = i; } } } for ( int i = 2; i < MAX; i++) { // If the number is prime then // it's the smallest prime factor // is the number itself if (prime[i] == 0) prime[i] = i; } } // Function to return the count of the divisors for // the product of all the numbers from the array static long numberOfDivisorsOfProduct( int []arr, int n) { for ( int i = 0; i < n; i++) { int temp = arr[i]; while (temp != 1) { // Increase the count of prime // encountered if (!prime_count.ContainsKey(prime[temp])) { prime_count[prime[temp]] = 0; } prime_count[prime[temp]] += 1; temp = temp / prime[temp]; } } long ans = 1; // Multiplying the count of primes // encountered foreach (KeyValuePair< int , int > it in prime_count) { ans = ans * (it.Value + 1); } return ans; } // Driver code public static void Main( string []args) { sieve(); int []arr = new int [] { 3, 5, 7 }; int n = arr.Length; Console.Write(numberOfDivisorsOfProduct(arr, n)); } } // This code is contributed by pratham76. |
Javascript
<script> // Javascript implementation of the approach let MAX = 10000002; let prime = new Array(MAX); for (let i=0;i<MAX;i++) prime[i]=0; // Map to store count of primes let prime_count = new Map(); // Function to store smallest prime factor // in prime[] function sieve() { prime[0] = 1; prime[1] = 1; for (let i = 2; i * i < MAX; i++) { if (prime[i] == 0) { for (let j = i * 2; j < MAX; j += i) { if (prime[j] == 0) prime[j] = i; } } } for (let i = 2; i < MAX; i++) { // If the number is prime then // it's the smallest prime factor // is the number itself if (prime[i] == 0) prime[i] = i; } } // Function to return the count of the divisors for // the product of all the numbers from the array function numberOfDivisorsOfProduct(arr,n) { for (let i = 0; i < n; i++) { let temp = arr[i]; while (temp != 1) { // Increase the count of prime // encountered if (!prime_count.has(prime[temp])) { prime_count.set(prime[temp], 0); } prime_count.set(prime[temp], prime_count.get(prime[temp]) + 1); temp = Math.floor(temp / prime[temp]); } } let ans = 1; // Multiplying the count of primes // encountered for (let it of prime_count.values()) { ans = ans * (it + 1); } return ans; } // Driver code sieve(); let arr = [ 3, 5, 7 ]; let n = arr.length; document.write(numberOfDivisorsOfProduct(arr, n)); // This code is contributed by unknown2108 </script> |
8
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!