Given a Binary Tree, the task is to print all levels of this tree in Boundary Level order traversal.
Boundary Level order traversal: In this traversal, the first element of the level (starting boundary) is printed first, followed by last element (ending boundary). Then the process is repeated for the second and last-second element, till the complete level has been printed.
Examples:
Input: 1 / \ 12 13 / \ / \ 11 6 4 11 / / \ / \ 23 7 9 2 4 Output: 1 12 13 11 11 6 4 23 4 7 2 9 Input: 7 / \ 22 19 / \ \ 3 6 13 / \ \ / \ 1 5 8 1 4 / 23 Output: 7 22 19 3 13 6 1 4 5 1 8 23
Approach:
- In order to print level in Boundary Level order traversal, we need to first do the Level Order Traversal of the Binary tree to get the values at each level.
- Here a Queue data structure is used to store the levels of the Tree while doing the Level Order Traversal.
- Then for each level, the first element of the level (starting boundary) is printed first, followed by the last element (ending boundary). Then the process is repeated for the second and last-second element, till the complete level has been printed.
Below is the implementation of the above approach:
C++
// C++ program for printing a // Levels of Binary Tree in a // start end fashion #include <bits/stdc++.h> using namespace std; // A Tree node struct Node { int key; struct Node *left, *right; }; // Utility function to create a new node Node* newNode( int key) { Node* temp = new Node; temp->key = key; temp->left = temp->right = NULL; return (temp); } // Utility function to print level in // start end fashion void printLevelUtil( struct Node* queue[], int index, int size) { while (index < size) { cout << queue[index++]->key << " " << queue[size--]->key << " " ; } if (index == size) { cout << queue[index]->key << " " ; } cout << endl; } // Utility function to print level in start // end fashion in a given Binary tree void printLevel( struct Node* node, struct Node* queue[], int index, int size) { // Print root node value // as a single value in a // binary tree cout << queue[index]->key << endl; // Level order traversal of Tree while (index < size) { int curr_size = size; while (index < curr_size) { struct Node* temp = queue[index]; if (temp->left != NULL) { queue[size++] = temp->left; } if (temp->right != NULL) { queue[size++] = temp->right; } index++; } // Print level in a desire fashion printLevelUtil(queue, index, size - 1); } } // Function to find total no of nodes int findSize( struct Node* node) { if (node == NULL) return 0; return 1 + findSize(node->left) + findSize(node->right); } // Function to print level in start end // fashion in a given binary tree void printLevelInStartEndFashion( struct Node* node) { int t_size = findSize(node); struct Node* queue[t_size]; queue[0] = node; printLevel(node, queue, 0, 1); } // Driver Code int main() { /* 10 / \ 13 13 / \ 14 15 / \ / \ 21 22 22 21 / 8 */ // Create Binary Tree as shown Node* root = newNode(10); root->left = newNode(13); root->right = newNode(13); root->right->left = newNode(14); root->right->right = newNode(15); root->right->left->left = newNode(21); root->right->left->right = newNode(22); root->right->right->left = newNode(22); root->right->right->right = newNode(21); root->right->right->right->left = newNode(8); // Print Levels In Start End Fashion printLevelInStartEndFashion(root); return 0; } |
Java
// Java program for printing a // Levels of Binary Tree in a // start end fashion class GFG{ // A Tree node static class Node { int key; Node left, right; }; // Utility function to create a new node static Node newNode( int key) { Node temp = new Node(); temp.key = key; temp.left = temp.right = null ; return (temp); } // Utility function to print level in // start end fashion static void printLevelUtil(Node queue[], int index, int size) { while (index < size) { System.out.print(queue[index++].key+ " " + queue[size--].key+ " " ); } if (index == size) { System.out.print(queue[index].key+ " " ); } System.out.println(); } // Utility function to print level in start // end fashion in a given Binary tree static void printLevel(Node node, Node queue[], int index, int size) { // Print root node value // as a single value in a // binary tree System.out.print(queue[index].key + "\n" ); // Level order traversal of Tree while (index < size) { int curr_size = size; while (index < curr_size) { Node temp = queue[index]; if (temp.left != null ) { queue[size++] = temp.left; } if (temp.right != null ) { queue[size++] = temp.right; } index++; } // Print level in a desire fashion printLevelUtil(queue, index, size - 1 ); } } // Function to find total no of nodes static int findSize(Node node) { if (node == null ) return 0 ; return 1 + findSize(node.left) + findSize(node.right); } // Function to print level in start end // fashion in a given binary tree static void printLevelInStartEndFashion( Node node) { int t_size = findSize(node); Node []queue = new Node[t_size]; queue[ 0 ] = node; printLevel(node, queue, 0 , 1 ); } // Driver Code public static void main(String[] args) { /* 10 / \ 13 13 / \ 14 15 / \ / \ 21 22 22 21 / 8 */ // Create Binary Tree as shown Node root = newNode( 10 ); root.left = newNode( 13 ); root.right = newNode( 13 ); root.right.left = newNode( 14 ); root.right.right = newNode( 15 ); root.right.left.left = newNode( 21 ); root.right.left.right = newNode( 22 ); root.right.right.left = newNode( 22 ); root.right.right.right = newNode( 21 ); root.right.right.right.left = newNode( 8 ); // Print Levels In Start End Fashion printLevelInStartEndFashion(root); } } // This code is contributed by Princi Singh |
Python3
# Python3 program for printing a # Levels of Binary Tree in a # start end fashion # A Tree node class Node: def __init__( self , key): self .key = key self .left = None self .right = None # function to create a # new node def newNode(key): temp = Node(key); return temp; # Utility function to print # level in start end fashion def printLevelUtil(queue, index, size): while (index < size): print ( str (queue[index].key) + ' ' + str (queue[size].key), end = ' ' ) size - = 1 index + = 1 if (index = = size): print (queue[index].key, end = ' ' ) print () # Utility function to print # level in start end fashion # in a given Binary tree def printLevel(node, queue, index, size): # Print root node value # as a single value in a # binary tree print (queue[index].key) # Level order traversal # of Tree while (index < size): curr_size = size; while (index < curr_size): temp = queue[index]; if (temp.left ! = None ): queue[size] = temp.left; size + = 1 if (temp.right ! = None ): queue[size] = temp.right; size + = 1 index + = 1 # Print level in a desire # fashion printLevelUtil(queue, index, size - 1 ); # Function to find total # no of nodes def findSize(node): if (node = = None ): return 0 ; return ( 1 + findSize(node.left) + findSize(node.right)); # Function to print level in start # end fashion in a given binary tree def printLevelInStartEndFashion(node): t_size = findSize(node); queue = [ 0 for i in range (t_size)]; queue[ 0 ] = node; printLevel(node, queue, 0 , 1 ); # Driver code if __name__ = = "__main__" : ''' 10 / \ 13 13 / \ 14 15 / \ / \ 21 22 22 21 / 8 ''' # Create Binary Tree as shown root = newNode( 10 ); root.left = newNode( 13 ); root.right = newNode( 13 ); root.right.left = newNode( 14 ); root.right.right = newNode( 15 ); root.right.left.left = newNode( 21 ); root.right.left.right = newNode( 22 ); root.right.right.left = newNode( 22 ); root.right.right.right = newNode( 21 ); root.right.right.right.left = newNode( 8 ); # Print Levels In Start End Fashion printLevelInStartEndFashion(root); # This code is contributed by Rutvik_56 |
C#
// C# program for printing a // Levels of Binary Tree in a // start end fashion using System; class GFG{ // A Tree node class Node { public int key; public Node left, right; }; // Utility function to create a new node static Node newNode( int key) { Node temp = new Node(); temp.key = key; temp.left = temp.right = null ; return (temp); } // Utility function to print level in // start end fashion static void printLevelUtil(Node []queue, int index, int size) { while (index < size) { Console.Write(queue[index++].key+ " " + queue[size--].key+ " " ); } if (index == size) { Console.Write(queue[index].key+ " " ); } Console.WriteLine(); } // Utility function to print level in start // end fashion in a given Binary tree static void printLevel(Node node, Node []queue, int index, int size) { // Print root node value // as a single value in a // binary tree Console.Write(queue[index].key + "\n" ); // Level order traversal of Tree while (index < size) { int curr_size = size; while (index < curr_size) { Node temp = queue[index]; if (temp.left != null ) { queue[size++] = temp.left; } if (temp.right != null ) { queue[size++] = temp.right; } index++; } // Print level in a desire fashion printLevelUtil(queue, index, size - 1); } } // Function to find total no of nodes static int findSize(Node node) { if (node == null ) return 0; return 1 + findSize(node.left) + findSize(node.right); } // Function to print level in start end // fashion in a given binary tree static void printLevelInStartEndFashion( Node node) { int t_size = findSize(node); Node []queue = new Node[t_size]; queue[0] = node; printLevel(node, queue, 0, 1); } // Driver Code public static void Main(String[] args) { /* 10 / \ 13 13 / \ 14 15 / \ / \ 21 22 22 21 / 8 */ // Create Binary Tree as shown Node root = newNode(10); root.left = newNode(13); root.right = newNode(13); root.right.left = newNode(14); root.right.right = newNode(15); root.right.left.left = newNode(21); root.right.left.right = newNode(22); root.right.right.left = newNode(22); root.right.right.right = newNode(21); root.right.right.right.left = newNode(8); // Print Levels In Start End Fashion printLevelInStartEndFashion(root); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // JavaScript program for printing a // Levels of Binary Tree in a // start end fashion // A Tree node class Node { constructor() { this .key = 0; this .left = null ; this .right = null ; } }; // Utility function to create a new node function newNode(key) { var temp = new Node(); temp.key = key; temp.left = temp.right = null ; return (temp); } // Utility function to print level in // start end fashion function printLevelUtil(queue, index, size) { while (index < size) { document.write(queue[index++].key+ " " + queue[size--].key+ " " ); } if (index == size) { document.write(queue[index].key+ " " ); } document.write( "<br>" ); } // Utility function to print level in start // end fashion in a given Binary tree function printLevel(node, queue, index, size) { // Print root node value // as a single value in a // binary tree document.write(queue[index].key + "<br>" ); // Level order traversal of Tree while (index < size) { var curr_size = size; while (index < curr_size) { var temp = queue[index]; if (temp.left != null ) { queue[size++] = temp.left; } if (temp.right != null ) { queue[size++] = temp.right; } index++; } // Print level in a desire fashion printLevelUtil(queue, index, size - 1); } } // Function to find total no of nodes function findSize(node) { if (node == null ) return 0; return 1 + findSize(node.left) + findSize(node.right); } // Function to print level in start end // fashion in a given binary tree function printLevelInStartEndFashion( node) { var t_size = findSize(node); var queue = Array(t_size); queue[0] = node; printLevel(node, queue, 0, 1); } // Driver Code /* 10 / \ 13 13 / \ 14 15 / \ / \ 21 22 22 21 / 8 */ // Create Binary Tree as shown var root = newNode(10); root.left = newNode(13); root.right = newNode(13); root.right.left = newNode(14); root.right.right = newNode(15); root.right.left.left = newNode(21); root.right.left.right = newNode(22); root.right.right.left = newNode(22); root.right.right.right = newNode(21); root.right.right.right.left = newNode(8); // Print Levels In Start End Fashion printLevelInStartEndFashion(root); </script> |
10 13 13 14 15 21 21 22 22 8
Time complexity: The time complexity of this implementation is also O(N), as the printLevel function visits each node in the tree exactly once and performs a constant amount of work for each node.
Auxiliary Space: The Auxiliary Space of this implementation is O(N), where N is the number of nodes in the tree. This is because the printLevel function uses an array of size N to store the nodes at each level of the tree as it performs a level order traversal.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!