Given a number N. The task is to find the smallest special prime which is greater than or equal to N.
A special prime is a number which can be created by placing digits one after another such the all the resulting numbers are prime.
Examples:
Input: N = 379 Output: 379 379 can be created as => 3 => 37 => 379 Here, all the numbers ie. 3, 37, 379 are prime. Input:N = 100 Output: 233
Approach: The idea is to use Sieve Of Eratosthenes. Build the sieve array up to the number N*10 (Assuming the number will exist in that range). Then start iteratively from the number N checking if the number is prime. If it is prime then check if it is special prime or not.
Now, to check if a number is a special prime or not. Keep dividing the number by 10 and at each point check whether the remaining number is prime or not, which we can do by referring our Sieve array which we have built.
Below is the implementation of the above approach:
C++
// CPP program to find the Smallest Special Prime // which is greater than or equal to a given number #include <bits/stdc++.h> using namespace std; // Function to check whether the number // is a special prime or not bool checkSpecialPrime( bool * sieve, int num) { // While number is not equal to zero while (num) { // If the number is not prime // return false. if (!sieve[num]) { return false ; } // Else remove the last digit // by dividing the number by 10. num /= 10; } // If the number has become zero // then the number is special prime, // hence return true return true ; } // Function to find the Smallest Special Prime // which is greater than or equal to a given number void findSpecialPrime( int N) { bool sieve[N*10]; // Initially all numbers are considered Primes. memset (sieve, true , sizeof (sieve)); sieve[0] = sieve[1] = false ; for ( long long i = 2; i <= N*10; i++) { if (sieve[i]) { for ( long long j = i * i; j <= N*10; j += i) { sieve[j] = false ; } } } // There is always an answer possible while ( true ) { // Checking if the number is a // special prime or not if (checkSpecialPrime(sieve, N)) { // If yes print the number // and break the loop. cout << N << '\n' ; break ; } // Else increment the number. else N++; } } // Driver code int main() { int N = 379; findSpecialPrime(N); N = 100; findSpecialPrime(N); return 0; } |
Java
// Java program to find the Smallest Special Prime // which is greater than or equal to a given number class GFG { // Function to check whether the number // is a special prime or not static boolean checkSpecialPrime( boolean []sieve, int num) { // While number is not equal to zero while (num > 0 ) { // If the number is not prime // return false. if (sieve[num]) { return false ; } // Else remove the last digit // by dividing the number by 10. num /= 10 ; } // If the number has become zero // then the number is special prime, // hence return true return true ; } // Function to find the Smallest Special Prime // which is greater than or equal to a given number static void findSpecialPrime( int N) { boolean [] sieve = new boolean [N * 10 + 1 ]; // Initially all numbers are considered Primes. sieve[ 0 ] = sieve[ 1 ] = true ; for ( int i = 2 ; i <= N * 10 ; i++) { if (!sieve[i]) { for ( int j = i * i; j <= N * 10 ; j += i) { sieve[j] = true ; } } } // There is always an answer possible while ( true ) { // Checking if the number is a // special prime or not if (checkSpecialPrime(sieve, N)) { // If yes print the number // and break the loop. System.out.println(N); break ; } // Else increment the number. else N++; } } // Driver code public static void main(String[] args) { int N = 379 ; findSpecialPrime(N); N = 100 ; findSpecialPrime(N); } } // This code contributed by Rajput-Ji |
Python3
# Python 3 program to find the Smallest # Special Prime which is greater than or # equal to a given number # Function to check whether the number # is a special prime or not def checkSpecialPrime(sieve, num): # While number is not equal to zero while (num): # If the number is not prime # return false. if (sieve[num] = = False ): return False # Else remove the last digit # by dividing the number by 10. num = int (num / 10 ) # If the number has become zero # then the number is special prime, # hence return true return True # Function to find the Smallest Special # Prime which is greater than or equal # to a given number def findSpecialPrime(N): sieve = [ True for i in range (N * 10 + 1 )] sieve[ 0 ] = False sieve[ 1 ] = False # sieve for finding the Primes for i in range ( 2 , N * 10 + 1 ): if (sieve[i]): for j in range (i * i, N * 10 + 1 , i): sieve[j] = False # There is always an answer possible while ( True ): # Checking if the number is a # special prime or not if (checkSpecialPrime(sieve, N)): # If yes print the number # and break the loop. print (N) break # Else increment the number. else : N + = 1 # Driver code if __name__ = = '__main__' : N = 379 findSpecialPrime(N) N = 100 findSpecialPrime(N) # This code is contributed by # Surendra_Gangwar |
C#
// C# program to find the Smallest Special Prime // which is greater than or equal to a given number using System; class GFG { // Function to check whether the number // is a special prime or not static bool checkSpecialPrime( bool []sieve, int num) { // While number is not equal to zero while (num > 0) { // If the number is not prime // return false. if (sieve[num]) { return false ; } // Else remove the last digit // by dividing the number by 10. num /= 10; } // If the number has become zero // then the number is special prime, // hence return true return true ; } // Function to find the Smallest Special Prime // which is greater than or equal to a given number static void findSpecialPrime( int N) { bool [] sieve = new bool [N * 10 + 1]; // Initially all numbers are considered Primes. sieve[0] = sieve[1] = true ; for ( int i = 2; i <= N * 10; i++) { if (!sieve[i]) { for ( int j = i * i; j <= N * 10; j += i) { sieve[j] = true ; } } } // There is always an answer possible while ( true ) { // Checking if the number is a // special prime or not if (checkSpecialPrime(sieve, N)) { // If yes print the number // and break the loop. Console.WriteLine(N); break ; } // Else increment the number. else N++; } } // Driver code static void Main() { int N = 379; findSpecialPrime(N); N = 100; findSpecialPrime(N); } } // This code is contributed by mits |
PHP
<?php // PHP program to find the Smallest Special // Prime which is greater than or equal // to a given number // Function to check whether the number // is a special prime or not function checkSpecialPrime( $sieve , $num ) { // While number is not equal to zero while ( $num ) { // If the number is not prime // return false. if (! $sieve [ $num ]) { return false; } // Else remove the last digit // by dividing the number by 10. $num = floor ( $num / 10); } // If the number has become zero // then the number is special prime, // hence return true return true; } // Function to find the Smallest Special // Prime which is greater than or equal // to a given number function findSpecialPrime( $N ) { // Initially all numbers are // considered Primes. $sieve = array_fill (0, $N * 10, true); $sieve [0] = $sieve [1] = false; for ( $i = 2; $i <= $N * 10; $i ++) { if ( $sieve [ $i ]) { for ( $j = $i * $i ; $j <= $N * 10; $j += $i ) { $sieve [ $j ] = false; } } } // There is always an answer possible while (true) { // Checking if the number is a // special prime or not if (checkSpecialPrime( $sieve , $N )) { // If yes print the number // and break the loop. echo $N , "\n" ; break ; } // Else increment the number. else $N ++; } } // Driver code $N = 379; findSpecialPrime( $N ); $N = 100; findSpecialPrime( $N ); // This code is contributed by Ryuga ?> |
Javascript
<script> // javascript program to find the Smallest Special Prime // which is greater than or equal to a given number // Function to check whether the number // is a special prime or not function checkSpecialPrime(sieve , num) { // While number is not equal to zero while (num > 0) { // If the number is not prime // return false. if (sieve[num]) { return false ; } // Else remove the last digit // by dividing the number by 10. num = parseInt(num / 10); } // If the number has become zero // then the number is special prime, // hence return true return true ; } // Function to find the Smallest Special Prime // which is greater than or equal to a given number function findSpecialPrime(N) { var sieve = Array.from({length: N * 10 + 1}, (_, i) => false ); // Initially all numbers are considered Primes. sieve[0] = true ; sieve[1] = true ; var i = 0, j = 0; for (i = 2; i <= N * 10; i++) { if (!sieve[i]) { for (j = i * i; j <= N * 10; j += i) { sieve[j] = true ; } } } // There is always an answer possible while ( true ) { // Checking if the number is a // special prime or not if (checkSpecialPrime(sieve, N)) { // If yes print the number // and break the loop. document.write(N+ "<br>" ); break ; } // Else increment the number. else N++; } } // Driver code var N = 379; findSpecialPrime(N); N = 100; findSpecialPrime(N); // This code is contributed by shikhasingrajput </script> |
379 233
Time Complexity: O(nlog(logn))
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!