Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIC++ Program to Efficiently Compute Sums of Diagonals of a Matrix

C++ Program to Efficiently Compute Sums of Diagonals of a Matrix

Given a 2D square matrix, find the sum of elements in Principal and Secondary diagonals. For example, consider the following 4 X 4 input matrix.
 

A00 A01 A02 A03
A10 A11 A12 A13
A20 A21 A22 A23
A30 A31 A32 A33

The primary diagonal is formed by the elements A00, A11, A22, A33. 
 

  1. Condition for Principal Diagonal: The row-column condition is row = column. 
    The secondary diagonal is formed by the elements A03, A12, A21, A30.
  2. Condition for Secondary Diagonal: The row-column condition is row = numberOfRows – column -1.

Examples :

Input: 
4
1 2 3 4
4 3 2 1
7 8 9 6
6 5 4 3
Output:
Principal Diagonal: 16
Secondary Diagonal: 20

Input:
3
1 1 1
1 1 1
1 1 1
Output:
Principal Diagonal: 3
Secondary Diagonal: 3

Method 1 (Brute Force) :

In this method, we use two loops i.e. a loop for columns and a loop for rows and in the inner loop we check for the condition stated above:

C++




// A simple C++ program to find sum 
// of diagonals
#include <bits/stdc++.h>
using namespace std;
  
const int MAX = 100;
  
void printDiagonalSums(int mat[][MAX], int n)
{
    int principal = 0, secondary = 0;
    for (int i = 0; i < n; i++) 
    {
        for (int j = 0; j < n; j++)    
        {
            // Condition for principal diagonal
            if (i == j)
                principal += mat[i][j];
  
            // Condition for secondary diagonal
            if ((i + j) == (n - 1))
                secondary += mat[i][j];
        }
    }
  
    cout << "Principal Diagonal:" << 
             principal << endl;
    cout << "Secondary Diagonal:" << 
             secondary << endl;
}
  
// Driver code
int main()
{
    int a[][MAX] = {{1, 2, 3, 4}, 
                    {5, 6, 7, 8}, 
                    {1, 2, 3, 4}, 
                    {5, 6, 7, 8}};
    printDiagonalSums(a, 4);
    return 0;
}


Output:  

Principal Diagonal:18
Secondary Diagonal:18

Time Complexity: O(N*N), as we are using nested loops to traverse N*N times.

Auxiliary Space: O(1), as we are not using any extra space.
 

Method 2 (Efficient Approach) :

In this method we use one loop i.e. a loop for calculating sum of both the principal and secondary diagonals:

C++




// An efficient C++ program to 
// find sum of diagonals
#include <bits/stdc++.h>
using namespace std;
  
const int MAX = 100;
  
void printDiagonalSums(int mat[][MAX], 
                       int n)
{
    int principal = 0, secondary = 0; 
    for (int i = 0; i < n; i++) 
    {
        principal += mat[i][i];
        secondary += mat[i][n - i - 1];        
    }
  
    cout << "Principal Diagonal:" << 
             principal << endl;
    cout << "Secondary Diagonal:" << 
             secondary << endl;
}
  
// Driver code
int main()
{
    int a[][MAX] = {{1, 2, 3, 4}, 
                    {5, 6, 7, 8}, 
                    {1, 2, 3, 4}, 
                    {5, 6, 7, 8}};
    printDiagonalSums(a, 4);
    return 0;
}


Output :

Principal Diagonal:18
Secondary Diagonal:18

Time Complexity: O(N), as we are using a loop to traverse N times.

Auxiliary Space: O(1), as we are not using any extra space.
Please refer complete article on Efficiently compute sums of diagonals of a matrix for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments