Given an integer array, the task is to divide the array into the maximum number of sub-arrays such that the averages of all subarrays are the same. If it is not possible to divide, then print “Not possible”.
Examples:
Input : arr[] = {1, 5, 7, 2, 0}; Output : (0 1) (2 4) Subarrays arr[0..1] and arr[2..4] have same average. Input : arr[] = {4, 6, 2, 4, 8, 0, 6, 2}; Output : (0, 0) (1, 2) (3, 3) (4, 5) (6, 7) Input : arr[] = {3, 3, 3}; Output : (0, 0) (1, 1) (2, 2) Input : arr[] = {4, 3, 5, 9, 11}; Output : Not possible
The idea is based on the fact that if an array can be divided into subarrays of the same average, then the average of all these subarrays must be the same as an overall average.
- Find the average of the whole array.
- Traverse array again and keep track of the average of the current subarray. As soon as the average becomes the same as the overall average, print the current subarray and begin a new subarray.
This solution divides into the maximum number of subarrays because we begin a new subarray as soon as we find the average same as an overall average.
Implementation:
C++
// C++ program to break given array into maximum // number of subarrays with equal average. #include<bits/stdc++.h> using namespace std; void findSubarrays( int arr[], int n) { // To store all points where we can break // given array into equal average subarrays. vector< int > result; // Compute total array sum int sum = 0; for ( int i = 0; i < n; i++) sum += arr[i]; int curr_sum = 0; // Current Sum int prev_index = -1; // Index of previous subarray for ( int i = 0; i < n ; i++) { curr_sum += arr[i]; // If current point is a break point. Note that // we don't compare actual averages to avoid // floating point errors. if (sum * (i - prev_index) == curr_sum * n) { // Update current sum and previous index curr_sum = 0; prev_index = i; // Add current break point result.push_back(i); } } // If last break point was not end of array, we // cannot break the whole array. if (prev_index != n-1) { cout << "Not Possible" ; return ; } // Printing the result in required format cout << "(0, " << result[0] << ")\n" ; for ( int i=1; i<result.size(); i++) cout << "(" << result[i-1] + 1 << ", " << result[i] << ")\n" ; } // Main Entry function code int main() { int arr[] = {4, 6, 2, 4, 8, 0, 6, 2}; int n = sizeof (arr)/ sizeof (arr[0]); findSubarrays(arr, n); return 0; } |
Java
// Java program to break given array into maximum // number of subarrays with equal average. import java.util.Vector; class GFG { static void findSubarrays( int arr[], int n) { // To store all points where we can break // given array into equal average subarrays. Vector<Integer> result = new Vector<>(); // Compute total array sum int sum = 0 ; for ( int i = 0 ; i < n; i++) sum += arr[i]; int curr_sum = 0 ; // Current Sum int prev_index = - 1 ; // Index of previous subarray for ( int i = 0 ; i < n ; i++) { curr_sum += arr[i]; // If current point is a break point. Note that // we don't compare actual averages to avoid // floating point errors. if (sum *(i - prev_index) == curr_sum*n) { // Update current sum and previous index curr_sum = 0 ; prev_index = i; // Add current break point result.add(i); } } // If last break point was not end of array, we // cannot break the whole array. if (prev_index != n- 1 ) { System.out.println( "Not Possible" ); return ; } // Printing the result in required format System.out.print( "(0, " + result.get( 0 ) + ")\n" ); for ( int i= 1 ; i<result.size(); i++) System.out.print( "(" + (result.get(i- 1 ) + 1 ) + ", " + result.get(i) + ")\n" ); } // Main Entry function code public static void main(String[] args) { int arr[] = { 4 , 6 , 2 , 4 , 8 , 0 , 6 , 2 }; int n = arr.length; findSubarrays(arr, n); } } // This code is contributed by 29AjayKumar |
Python3
# Python 3 program to break given array # into maximum number of subarrays with # equal average. def findSubarrays(arr, n): # To store all points where we can break # given array into equal average subarrays. result = [] # Compute total array sum sum = 0 for i in range ( 0 , n, 1 ): sum + = arr[i] curr_sum = 0 # Current Sum prev_index = - 1 # Index of previous subarray for i in range ( 0 , n, 1 ): curr_sum + = arr[i] # If current point is a break point. # Note that we don't compare actual # averages to avoid floating point errors. if ( sum * (i - prev_index) = = curr_sum * n): # Update current sum and # previous index curr_sum = 0 prev_index = i # Add current break point result.append(i) # If last break point was not end of # array, we cannot break the whole array. if (prev_index ! = n - 1 ): print ( "Not Possible" , end = " " ) # Printing the result in required format print ( "( 0 ," , result[ 0 ], ")" ) for i in range ( 1 , len (result), 1 ): print ( "(" , result[i - 1 ] + 1 , "," , result[i], ")" ) # Driver Code if __name__ = = '__main__' : arr = [ 4 , 6 , 2 , 4 , 8 , 0 , 6 , 2 ] n = len (arr) findSubarrays(arr, n) # This code is contributed by # Sanjit_Prasad |
C#
// C# program to break given array into maximum // number of subarrays with equal average. using System; using System.Collections.Generic; class GFG { static void findSubarrays( int []arr, int n) { // To store all points where we can break // given array into equal average subarrays. List< int > result = new List< int >(); // Compute total array sum int sum = 0; for ( int i = 0; i < n; i++) sum += arr[i]; int curr_sum = 0; // Current Sum int prev_index = -1; // Index of previous subarray for ( int i = 0; i < n ; i++) { curr_sum += arr[i]; // If current point is a break point. Note that // we don't compare actual averages to avoid // floating point errors. if (sum *(i - prev_index) == curr_sum*n) { // Update current sum and previous index curr_sum = 0; prev_index = i; // Add current break point result.Add(i); } } // If last break point was not end of array, we // cannot break the whole array. if (prev_index != n-1) { Console.Write( "Not Possible" ); return ; } // Printing the result in required format Console.Write( "(0, " + result[0] + ")\n" ); for ( int i = 1; i < result.Count; i++) Console.Write( "(" + (result[i-1] + 1) + ", " + result[i] + ")\n" ); } // Driver code public static void Main() { int []arr = {4, 6, 2, 4, 8, 0, 6, 2}; int n = arr.Length; findSubarrays(arr, n); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // javascript program to break given array into maximum // number of subarrays with equal average. function findSubarrays(arr , n) { // To store all points where we can break // given array into equal average subarrays. var result = []; // Compute total array sum var sum = 0; for (i = 0; i < n; i++) sum += arr[i]; var curr_sum = 0; // Current Sum var prev_index = -1; // Index of previous subarray for (i = 0; i < n; i++) { curr_sum += arr[i]; // If current point is a break point. Note that // we don't compare actual averages to avoid // floating point errors. if (sum * (i - prev_index) == curr_sum * n) { // Update current sum and previous index curr_sum = 0; prev_index = i; // Add current break point result.push(i); } } // If last break point was not end of array, we // cannot break the whole array. if (prev_index != n - 1) { document.write( "Not Possible" ); return ; } // Printing the result in required format document.write( "(0, " + result[0] + ")<br/>" ); for (i = 1; i < result.length; i++) document.write( "(" + (result[i - 1] + 1) + ", " + result[i] + ")<br/>" ); } // Main Entry function code var arr = [ 4, 6, 2, 4, 8, 0, 6, 2 ]; var n = arr.length; findSubarrays(arr, n); // This code contributed by aashish1995 </script> |
(0, 0) (1, 2) (3, 3) (4, 5) (6, 7)
Time complexity: O(n)
Auxiliary Space: O(1)
If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!