Given Adjacency List representation of graph of N vertices from 1 to N, the task is to count the minimum bipartite groups of the given graph.
Examples:
Input: N = 5
Below is the given graph with number of nodes is 5:
Output: 3
Explanation:
Possible groups satisfying the Bipartite property: [2, 5], [1, 3], [4]
Below is the number of bipartite groups can be formed:
Approach:
The idea is to find the maximum height of all the Connected Components in the given graph of N nodes to find the minimum bipartite groups. Below are the steps:
- For all the non-visited vertex in the given graph, find the height of the current Connected Components starting from the current vertex.
- Start DFS Traversal to find the height of all the Connected Components.
- The maximum of the heights calculated for all the Connected Components gives the minimum bipartite groups required.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; // Function to find the height sizeof // the current component with vertex s int height( int s, vector< int > adj[], int * visited) { // Visit the current Node visited[s] = 1; int h = 0; // Call DFS recursively to find the // maximum height of current CC for ( auto & child : adj[s]) { // If the node is not visited // then the height recursively // for next element if (visited[child] == 0) { h = max(h, 1 + height(child, adj, visited)); } } return h; } // Function to find the minimum Groups int minimumGroups(vector< int > adj[], int N) { // Initialise with visited array int visited[N + 1] = { 0 }; // To find the minimum groups int groups = INT_MIN; // Traverse all the non visited Node // and calculate the height of the // tree with current node as a head for ( int i = 1; i <= N; i++) { // If the current is not visited // therefore, we get another CC if (visited[i] == 0) { int comHeight; comHeight = height(i, adj, visited); groups = max(groups, comHeight); } } // Return the minimum bipartite matching return groups; } // Function that adds the current edges // in the given graph void addEdge(vector< int > adj[], int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } // Drivers Code int main() { int N = 5; // Adjacency List vector< int > adj[N + 1]; // Adding edges to List addEdge(adj, 1, 2); addEdge(adj, 3, 2); addEdge(adj, 4, 3); cout << minimumGroups(adj, N); } |
Java
import java.util.*; class GFG{ // Function to find the height sizeof // the current component with vertex s static int height( int s, Vector<Integer> adj[], int []visited) { // Visit the current Node visited[s] = 1 ; int h = 0 ; // Call DFS recursively to find the // maximum height of current CC for ( int child : adj[s]) { // If the node is not visited // then the height recursively // for next element if (visited[child] == 0 ) { h = Math.max(h, 1 + height(child, adj, visited)); } } return h; } // Function to find the minimum Groups static int minimumGroups(Vector<Integer> adj[], int N) { // Initialise with visited array int []visited= new int [N + 1 ]; // To find the minimum groups int groups = Integer.MIN_VALUE; // Traverse all the non visited Node // and calculate the height of the // tree with current node as a head for ( int i = 1 ; i <= N; i++) { // If the current is not visited // therefore, we get another CC if (visited[i] == 0 ) { int comHeight; comHeight = height(i, adj, visited); groups = Math.max(groups, comHeight); } } // Return the minimum bipartite matching return groups; } // Function that adds the current edges // in the given graph static void addEdge(Vector<Integer> adj[], int u, int v) { adj[u].add(v); adj[v].add(u); } // Drivers Code public static void main(String[] args) { int N = 5 ; // Adjacency List Vector<Integer> []adj = new Vector[N + 1 ]; for ( int i = 0 ; i < N + 1 ; i++) adj[i] = new Vector<Integer>(); // Adding edges to List addEdge(adj, 1 , 2 ); addEdge(adj, 3 , 2 ); addEdge(adj, 4 , 3 ); System.out.print(minimumGroups(adj, N)); } } // This code is contributed by 29AjayKumar |
Python3
import sys # Function to find the height sizeof # the current component with vertex s def height(s, adj, visited): # Visit the current Node visited[s] = 1 h = 0 # Call DFS recursively to find the # maximum height of current CC for child in adj[s]: # If the node is not visited # then the height recursively # for next element if (visited[child] = = 0 ): h = max (h, 1 + height(child, adj, visited)) return h # Function to find the minimum Groups def minimumGroups(adj, N): # Initialise with visited array visited = [ 0 for i in range (N + 1 )] # To find the minimum groups groups = - sys.maxsize # Traverse all the non visited Node # and calculate the height of the # tree with current node as a head for i in range ( 1 , N + 1 ): # If the current is not visited # therefore, we get another CC if (visited[i] = = 0 ): comHeight = height(i, adj, visited) groups = max (groups, comHeight) # Return the minimum bipartite matching return groups # Function that adds the current edges # in the given graph def addEdge(adj, u, v): adj[u].append(v) adj[v].append(u) # Driver code if __name__ = = "__main__" : N = 5 # Adjacency List adj = [[] for i in range (N + 1 )] # Adding edges to List addEdge(adj, 1 , 2 ) addEdge(adj, 3 , 2 ) addEdge(adj, 4 , 3 ) print (minimumGroups(adj, N)) # This code is contributed by rutvik_56 |
C#
using System; using System.Collections.Generic; class GFG{ // Function to find the height sizeof // the current component with vertex s static int height( int s, List< int > []adj, int []visited) { // Visit the current Node visited[s] = 1; int h = 0; // Call DFS recursively to find the // maximum height of current CC foreach ( int child in adj[s]) { // If the node is not visited // then the height recursively // for next element if (visited[child] == 0) { h = Math.Max(h, 1 + height(child, adj, visited)); } } return h; } // Function to find the minimum Groups static int minimumGroups(List< int > []adj, int N) { // Initialise with visited array int []visited= new int [N + 1]; // To find the minimum groups int groups = int .MinValue; // Traverse all the non visited Node // and calculate the height of the // tree with current node as a head for ( int i = 1; i <= N; i++) { // If the current is not visited // therefore, we get another CC if (visited[i] == 0) { int comHeight; comHeight = height(i, adj, visited); groups = Math.Max(groups, comHeight); } } // Return the minimum bipartite matching return groups; } // Function that adds the current edges // in the given graph static void addEdge(List< int > []adj, int u, int v) { adj[u].Add(v); adj[v].Add(u); } // Drivers Code public static void Main(String[] args) { int N = 5; // Adjacency List List< int > []adj = new List< int >[N + 1]; for ( int i = 0 ; i < N + 1; i++) adj[i] = new List< int >(); // Adding edges to List addEdge(adj, 1, 2); addEdge(adj, 3, 2); addEdge(adj, 4, 3); Console.Write(minimumGroups(adj, N)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Function to find the height sizeof // the current component with vertex s function height(s, adj, visited) { // Visit the current Node visited[s] = 1; var h = 0; // Call DFS recursively to find the // maximum height of current CC adj[s].forEach(child => { // If the node is not visited // then the height recursively // for next element if (visited[child] == 0) { h = Math.max(h, 1 + height(child, adj, visited)); } }); return h; } // Function to find the minimum Groups function minimumGroups(adj, N) { // Initialise with visited array var visited = Array(N+1).fill(0); // To find the minimum groups var groups = -1000000000; // Traverse all the non visited Node // and calculate the height of the // tree with current node as a head for ( var i = 1; i <= N; i++) { // If the current is not visited // therefore, we get another CC if (visited[i] == 0) { var comHeight; comHeight = height(i, adj, visited); groups = Math.max(groups, comHeight); } } // Return the minimum bipartite matching return groups; } // Function that adds the current edges // in the given graph function addEdge(adj, u, v) { adj[u].push(v); adj[v].push(u); } // Drivers Code var N = 5; // Adjacency List var adj = Array.from(Array(N+1), ()=>Array()) // Adding edges to List addEdge(adj, 1, 2); addEdge(adj, 3, 2); addEdge(adj, 4, 3); document.write( minimumGroups(adj, N)); </script> |
3
Time Complexity: O(V+E), where V is the number of vertices and E is the set of edges.
Auxiliary Space: O(V).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!