Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIMinimum steps to convert X to Y by repeated division and multiplication

Minimum steps to convert X to Y by repeated division and multiplication

Given two integers X and Y, the task is to find the minimum number of steps to convert integer X to Y using any of the operations in each step: 

  • Divide the number by any natural number
  • Multiply the number with any natural number

Examples: 

Input: X = 8, Y = 12 
Output:
Explanation: 
First divide 8 by 2: 8/2 = 4 
Then multiply by 3: 4*3 = 12

Input: X = 4, Y = 8 
Output:
Explanation: 
To convert 4 to 8 multiply 4 by 2: 4 * 2 = 8 

Approach: To solve the problem mentioned above: 

  • Make sure X contains the smaller value among X and Y. Now, if X is greater than Y then we know that it is always easier to change a smaller number to a larger number. Hence, we just swap the values of X and Y and then follow the steps mentioned below.
  • If both the integers are the same then the answer will be zero as no conversion takes place.
    For example,
If X = 4, Y = 4

Here 4 = 4
Therefore, answer = 0
(as they both are already same)
  • However, if X is less than Y then: 
    • we have to check that Y % X gives 0 or not.
    • If yes, then Y can be represented as X * (Y / X) and we get the desired output in single-step.
      For example,
If X = 4, Y = 12

Here 12 % 4 = 0
Therefore, answer = 1
(4 * 3 = 12)
  • Otherwise, the answer will be 2 as it takes two steps, one for division (X = X/X) and the other for multiplication (X = X * Y).
    For example,
If X = 8, Y = 13

Here 13 % 8 != 0
Therefore, 
1. X = X/X = 8/8 = 1
2. X = X*Y = 1*13 = 13

Hence, answer = 2

Below is the implementation of the above approach:

C++




// C++ implementation to find minimum
// steps to convert X to Y by repeated
// division and multiplication
 
#include <bits/stdc++.h>
using namespace std;
 
int solve(int X, int Y)
{
    // Check if X is greater than Y
    // then swap the elements
    if (X > Y) {
        int temp = X;
        X = Y;
        Y = temp;
    }
 
    // Check if X equals Y
    if (X == Y)
        cout << 0 << endl;
 
    else if (Y % X == 0)
        cout << 1 << endl;
    else
        cout << 2 << endl;
}
 
// Driver code
int main()
{
    int X = 8, Y = 13;
    solve(X, Y);
 
    return 0;
}


Java




// Java implementation to find minimum
// steps to convert X to Y by repeated
// division and multiplication
class GFG{
 
static int solve(int X, int Y)
{
    // Check if X is greater than Y
    // then swap the elements
    if (X > Y)
    {
        int temp = X;
        X = Y;
        Y = temp;
    }
 
    // Check if X equals Y
    if (X == Y)
        System.out.println(0 );
 
    else if (Y % X == 0)
        System.out.println( 1 );
    else
        System.out.println(2 );
        return 0;
}
 
// Driver code
public static void main(String args[])
{
    int X = 8, Y = 13;
    solve(X, Y);
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python3 implementation to find minimum
# steps to convert X to Y by repeated
# division and multiplication
def solve(X, Y):
     
    # Check if X is greater than Y
    # then swap the elements
    if (X > Y):
        temp = X
        X = Y
        Y = temp
   
    # Check if X equals Y
    if (X == Y):
        print(0)
   
    elif (Y % X == 0):
        print(1)
    else:
        print(2)
  
# Driver code
X = 8
Y = 13
 
solve(X, Y)
 
# This code is contributed by code_hunt


C#




// C# implementation to find minimum
// steps to convert X to Y by repeated
// division and multiplication
using System;
 
class GFG{
 
static int solve(int X, int Y)
{
     
    // Check if X is greater than Y
    // then swap the elements
    if (X > Y)
    {
        int temp = X;
        X = Y;
        Y = temp;
    }
 
    // Check if X equals Y
    if (X == Y)
        Console.WriteLine(0);
 
    else if (Y % X == 0)
        Console.WriteLine(1);
    else
        Console.WriteLine(2);
    return 0;
}
 
// Driver code
public static void Main(String[] args)
{
    int X = 8, Y = 13;
    solve(X, Y);
}
}
 
// This code is contributed by amal kumar choubey


Javascript




<script>
 
    // Javascript implementation to find minimum
    // steps to convert X to Y by repeated
    // division and multiplication
     
    function solve(X, Y)
    {
        // Check if X is greater than Y
        // then swap the elements
        if (X > Y) {
            let temp = X;
            X = Y;
            Y = temp;
        }
 
        // Check if X equals Y
        if (X == Y)
            document.write(0);
 
        else if (Y % X == 0)
            document.write(1);
        else
            document.write(2);
    }
     
    let X = 8, Y = 13;
    solve(X, Y);
 
 
</script>


Output

2

Time Complexity: O(1), as we are using only constant-time operations.

Auxiliary Space: O(1), as we are not using any extra space.

Method 2: Use the concept of the Greatest Common Divisor (GCD) of X and Y.

In this approach, we first calculate the GCD of X and Y using the math.gcd() function. Then, we divide X by the GCD to get a reduced value. We then repeatedly divide the reduced value by 2 until we get 1, and count the number of steps taken. Finally, we add 1 to the step count to account for the multiplication step required to convert the reduced value back to Y.

C++




#include <iostream>
#include <bits/stdc++.h>
 
using namespace std;
 
void solve(int X, int Y) {
    int gcd = __gcd(X, Y);
    X /= gcd;
    int steps = 0;
    while (X > 1) {
        X /= 2;
        steps++;
    }
    cout << steps + 1 << endl;
}
 
int main() {
    int X = 8, Y = 12;
    solve(X, Y);
    return 0;
}


Python3




import math
 
def solve(X, Y):
    gcd = math.gcd(X, Y)
    X //= gcd
    steps = 0
    while X > 1:
        X //= 2
        steps += 1
    print(steps + 1)
   
X = 8
Y = 12
solve(X, Y)


Java




import java.util.*;
 
public class Main {
    public static void main(String[] args) {
        int X = 8, Y = 12;
        solve(X, Y);
    }
 
    public static void solve(int X, int Y) {
        int gcd = gcd(X, Y);
        X /= gcd;
        int steps = 0;
        while (X > 1) {
            X /= 2;
            steps++;
        }
        System.out.println(steps + 1);
    }
 
    public static int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
}


C#




using System;
 
class Program
{
    static void Main(string[] args)
    {
        int X = 8, Y = 12;
        solve(X, Y);
    }
 
    static void solve(int X, int Y)
    {
        int gcd = MathExt.Gcd(X, Y);
        X /= gcd;
        int steps = 0;
        while (X > 1)
        {
            X /= 2;
            steps++;
        }
        Console.WriteLine(steps + 1);
    }
}
 
public static class MathExt
{
    public static int Gcd(int a, int b)
    {
        return b == 0 ? a : Gcd(b, a % b);
    }
}


Javascript




function solve(X, Y) {
    const gcd = Gcd(X, Y);
    X /= gcd;
    let steps = 0;
    while (X > 1) {
        X /= 2;
        steps++;
    }
    console.log(steps + 1);
}
 
function Gcd(a, b) {
    return b == 0 ? a : Gcd(b, a % b);
}
 
const X = 8, Y = 12;
solve(X, Y);


Output

2

The time complexity of the provided function is O(log(min(X, Y))) because we are performing division by 2 repeatedly until X reaches 1, and the number of times we need to perform this operation is proportional to the logarithm of X.

The auxiliary space of the function is O(1) because we are using a constant amount of memory to store the variables X, Y, gcd, and steps. The space required for the math module is not considered because it is a built-in module and its space is already reserved by the Python interpreter.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments