Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIFind a Symmetric matrix of order N that contain integers from 0...

Find a Symmetric matrix of order N that contain integers from 0 to N-1 and main diagonal should contain only 0’s

Given an integer N. The task is to generate a symmetric matrix of order N*N having the following properties. 
 

  1. Main diagonal should contain only 0’s
  2. The matrix should contain elements from 0 to N-1 only.

Examples: 
 

Input: N = 4 
Output: 
0 2 3 1 
2 0 1 3 
3 1 0 2 
1 3 2 0
Input: N = 5 
Output: 
0 2 3 4 1 
2 0 4 1 3 
3 4 0 2 1 
4 1 2 0 3 
1 3 1 3 0 
 

 

Approach: Since the required matrix has to be a square matrix, we can generate a symmetric matrix containing an element from 1 to n-1, excluding 0. We will deal with the case of 0 later. 
Take for example when N = 4: 
We first generate a symmetric matrix, and it can be easily done by filling every row from 1 to n-1 in cyclic order, i.e. fill the first row by 1 2 3, and do this for all subsequent rows in cyclic order. 
 

So, the final matrix will be, 
1 2 3 
2 3 1 
3 1 2 
 

Now, we have generated a symmetric matrix containing elements from 1 to n. Let’s discuss case 0. We will take the benefit of the above matrix being symmetrical, we will add a column of 0 and rows of 0 like this, 
 

1 2 3 0 
2 3 1 0 
3 1 2 0 
0 0 0 0 
 

Now, we have to put all 0 in diagonal. For this, we will start with the first row till last-1 row and swap all the 0 with the number that is there in each row and will also make a change in the last row like this: 
 

For row 1, we swap 0 and 1 and also put last row’s 1st element with the number we swapped i.e. 1. 
0 2 3 1 
2 3 1 0 
3 1 2 0 
1 0 0 0
For row 2 we swap 0 and 3, and make the second element of the last row also 3. 
0 2 3 1 
2 0 1 3 
3 1 2 0 
1 3 0 0 
and so on… 
The final matrix generated will be the required matrix. 
 

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate the required matrix
void solve(long long n)
{
    long long initial_array[n - 1][n - 1], final_array[n][n];
 
    for (long long i = 0; i < n - 1; ++i)
        initial_array[0][i] = i + 1;
 
    // Form cyclic array of elements 1 to n-1
    for (long long i = 1; i < n - 1; ++i)
        for (long long j = 0; j < n - 1; ++j)
            initial_array[i][j]
                = initial_array[i - 1][(j + 1) % (n - 1)];
 
    // Store initial array into final array
    for (long long i = 0; i < n - 1; ++i)
        for (long long j = 0; j < n - 1; ++j)
            final_array[i][j] = initial_array[i][j];
 
    // Fill the last row and column with 0's
    for (long long i = 0; i < n; ++i)
        final_array[i][n - 1] = final_array[n - 1][i] = 0;
 
    for (long long i = 0; i < n; ++i) {
        long long t0 = final_array[i][i];
        long long t1 = final_array[i][n - 1];
 
        // Swap 0 and the number present
        // at the current indexed row
        swap(final_array[i][i], final_array[i][n - 1]);
 
        // Also make changes in the last row
        // with the number we swapped
        final_array[n - 1][i] = t0;
    }
 
    // Print the final array
    for (long long i = 0; i < n; ++i) {
        for (long long j = 0; j < n; ++j)
            cout << final_array[i][j] << " ";
        cout << endl;
    }
}
 
// Driver code
int main()
{
    long long n = 5;
    solve(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to generate the required matrix
static void solve(long n)
{
    long initial_array[][]= new long[(int)n - 1][(int)n - 1],
                    final_array[][]= new long[(int)n][(int)n];
 
    for (long i = 0; i < n - 1; ++i)
        initial_array[0][(int)i] = i + 1;
 
    // Form cyclic array of elements 1 to n-1
    for (long i = 1; i < n - 1; ++i)
        for (long j = 0; j < n - 1; ++j)
            initial_array[(int)i][(int)j]
                = initial_array[(int)i - 1][(int)((int)j + 1) % ((int)n - 1)];
 
    // Store initial array into final array
    for (long i = 0; i < n - 1; ++i)
        for (long j = 0; j < n - 1; ++j)
            final_array[(int)i][(int)j] = initial_array[(int)i][(int)j];
 
    // Fill the last row and column with 0's
    for (long i = 0; i < n; ++i)
        final_array[(int)i][(int)n - 1] = final_array[(int)n - 1][(int)i] = 0;
 
    for (long i = 0; i < n; ++i)
    {
        long t0 = final_array[(int)i][(int)i];
        long t1 = final_array[(int)i][(int)n - 1];
 
        // Swap 0 and the number present
        // at the current indexed row
        long s = final_array[(int)i][(int)i];
        final_array[(int)i][(int)i]=final_array[(int)i][(int)n - 1];
        final_array[(int)i][(int)n - 1]=s;
 
        // Also make changes in the last row
        // with the number we swapped
        final_array[(int)n - 1][(int)i] = t0;
    }
 
    // Print the final array
    for (long i = 0; i < n; ++i)
    {
        for (long j = 0; j < n; ++j)
            System.out.print( final_array[(int)i][(int)j] + " ");
        System.out.println();
    }
}
 
// Driver code
public static void main(String args[])
{
    long n = 5;
    solve(n);
}
}
 
// This code is contributed by Arnab Kundu
   


Python3




# Python 3 implementation of the approach
 
# Function to generate the required matrix
def solve(n):
    initial_array = [[0 for i in range(n-1)] for j in range(n-1)]
    final_array = [[0 for i in range(n)]for j in range(n)]
 
    for i in range(n - 1):
        initial_array[0][i] = i + 1
 
    # Form cyclic array of elements 1 to n-1
    for i in range(1, n - 1):
        for j in range(n - 1):
            initial_array[i][j] = initial_array[i - 1][(j + 1) % (n - 1)]
 
    # Store initial array into final array
    for i in range(n-1):
        for j in range(n-1):
            final_array[i][j] = initial_array[i][j]
 
    # Fill the last row and column with 0's
    for i in range(n):
        final_array[i][n - 1] = final_array[n - 1][i] = 0
 
    for i in range(n):
        t0 = final_array[i][i]
        t1 = final_array[i][n - 1]
 
        # Swap 0 and the number present
        # at the current indexed row
        temp = final_array[i][i]
        final_array[i][i] = final_array[i][n - 1]
        final_array[i][n - 1] = temp
 
        # Also make changes in the last row
        # with the number we swapped
        final_array[n - 1][i] = t0
 
    # Print the final array
    for i in range(n):
        for j in range(n):
            print(final_array[i][j],end = " ")
        print("\n",end = "")
 
# Driver code
if __name__ == '__main__':
    n = 5
    solve(n)
     
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to generate the required matrix
static void solve(long n)
{
    long [,]initial_array = new long[(int)n - 1,(int)n - 1];
    long [,]final_array = new long[(int)n,(int)n];
 
    for (long i = 0; i < n - 1; ++i)
        initial_array[0,(int)i] = i + 1;
 
    // Form cyclic array of elements 1 to n-1
    for (long i = 1; i < n - 1; ++i)
        for (long j = 0; j < n - 1; ++j)
            initial_array[(int)i,(int)j]
                = initial_array[(int)i - 1,(int)((int)j + 1) % ((int)n - 1)];
 
    // Store initial array into final array
    for (long i = 0; i < n - 1; ++i)
        for (long j = 0; j < n - 1; ++j)
            final_array[(int)i,(int)j] = initial_array[(int)i,(int)j];
 
    // Fill the last row and column with 0's
    for (long i = 0; i < n; ++i)
        final_array[(int)i,(int)n - 1] = final_array[(int)n - 1,(int)i] = 0;
 
    for (long i = 0; i < n; ++i)
    {
        long t0 = final_array[(int)i, (int)i];
        long t1 = final_array[(int)i, (int)n - 1];
 
        // Swap 0 and the number present
        // at the current indexed row
        long s = final_array[(int)i,(int)i];
        final_array[(int)i,(int)i] = final_array[(int)i, (int)n - 1];
        final_array[(int)i,(int)n - 1] = s;
 
        // Also make changes in the last row
        // with the number we swapped
        final_array[(int)n - 1,(int)i] = t0;
    }
 
    // Print the final array
    for (long i = 0; i < n; ++i)
    {
        for (long j = 0; j < n; ++j)
            Console.Write( final_array[(int)i,(int)j] + " ");
        Console.WriteLine();
    }
}
 
// Driver code
public static void Main(String []args)
{
    long n = 5;
    solve(n);
}
}
 
// This code contributed by Rajput-Ji


PHP




<?php
// Php implementation of the approach
 
// Function to generate the required matrix
function solve($n)
{
    $initial_array = array(array()) ;
    $final_array = array(array()) ;
 
    for ($i = 0; $i < $n - 1; ++$i)
        $initial_array[0][$i] = $i + 1;
 
    // Form cyclic array of elements 1 to n-1
    for ($i = 1; $i < $n - 1; ++$i)
        for ($j = 0; $j < $n - 1; ++$j)
            $initial_array[$i][$j] =
                $initial_array[$i - 1][($j + 1) % ($n - 1)];
 
    // Store initial array into final array
    for ($i = 0; $i < $n - 1; ++$i)
        for ($j = 0; $j < $n - 1; ++$j)
            $final_array[$i][$j] = $initial_array[$i][$j];
 
    // Fill the last row and column with 0's
    for ($i = 0; $i < $n; ++$i)
        $final_array[$i][$n - 1] = $final_array[$n - 1][$i] = 0;
 
    for ($i = 0; $i < $n; ++$i)
    {
        $t0 = $final_array[$i][$i];
        $t1 = $final_array[$i][$n - 1];
 
        // Swap 0 and the number present
        // at the current indexed row
        $temp = $final_array[$i][$i] ;
        $final_array[$i][$i] = $final_array[$i][$n - 1] ;
        $final_array[$i][$n - 1] = $temp ;
 
        // Also make changes in the last row
        // with the number we swapped
        $final_array[$n - 1][$i] = $t0;
    }
 
    // Print the final array
    for ($i = 0; $i < $n; ++$i)
    {
        for ($j = 0; $j < $n; ++$j)
            echo $final_array[$i][$j]," ";
        echo "\n";
    }
}
 
    // Driver code
    $n = 5;
    solve($n);
     
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to generate the required matrix
function solve(n)
{
    let initial_array = new Array(n-1);
    for (var i = 0; i < initial_array.length; i++) {
    initial_array[i] = new Array(2);
    }
     
    let final_array = new Array(n);
    for (var i = 0; i < final_array.length; i++) {
    final_array[i] = new Array(2);
    }
   
    for (let i = 0; i < n - 1; ++i)
        initial_array[0][i] = i + 1;
   
    // Form cyclic array of elements 1 to n-1
    for (let i = 1; i < n - 1; ++i)
        for (let j = 0; j < n - 1; ++j)
            initial_array[i][j]
                = initial_array[i - 1][(j + 1) % (n - 1)];
   
    // Store initial array into final array
    for (let i = 0; i < n - 1; ++i)
        for (let j = 0; j < n - 1; ++j)
            final_array[i][j] = initial_array[i][j];
   
    // Fill the last row and column with 0's
    for (let i = 0; i < n; ++i)
        final_array[i][n - 1] = final_array[n - 1][i] = 0;
   
    for (let i = 0; i < n; ++i)
    {
        let t0 = final_array[i][i];
        let t1 = final_array[i][n - 1];
   
        // Swap 0 and the number present
        // at the current indexed row
        let s = final_array[i][i];
        final_array[i][i]=final_array[i][n - 1];
        final_array[i][n - 1]=s;
   
        // Also make changes in the last row
        // with the number we swapped
        final_array[n - 1][i] = t0;
    }
   
    // Print the final array
    for (let i = 0; i < n; ++i)
    {
        for (let j = 0; j < n; ++j)
            document.write( final_array[i][j] + " ");
        document.write("<br/>");
    }
}  
 
// Driver Code
    let n = 5;
    solve(n);
   
  // This code is contributed by target_2.
</script>


Output

0 2 3 4 1 
2 0 4 1 3 
3 4 0 2 1 
4 1 2 0 3 
1 3 1 3 0 

Time Complexity: O(N2)

Auxiliary Space: O(N2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments