Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICounts Path in an Array

Counts Path in an Array

Given an array A consisting of positive integer, of size N. If the element in the array at index i is K then you can jump between index ranges (i + 1) to (i + K)
The task is to find the number of possible ways to reach the end with module 109 + 7.
The starting position is considered as index 0.
Examples: 
 

Input: A = {5, 3, 1, 4, 3} 
Output: 6
Input: A = {2, 3, 1, 1, 2} 
Output:
 

 

Naive Approach: We can form a recursive structure to solve the problem.
Let F[i] denotes the number of paths starting at index i, at every index i if the element A[i] is K then the total number of ways the jump can be performed is: 
 

F(i) = F(i+1) + F(i+2) +...+ F(i+k), where i + k <= n, 
where F(n) = 1

By using this recursive formula we can solve the problem:
 

C++




// C++ implementation of
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
const int mod = 1e9 + 7;
 
// Find the number of ways
// to reach the end
int ways(int i, int arr[], int n)
{
    // Base case
    if (i == n - 1)
        return 1;
 
    int sum = 0;
 
    // Recursive structure
    for (int j = 1;
         j + i < n && j <= arr[i];
         j++) {
        sum += (ways(i + j,
                     arr, n))
               % mod;
        sum %= mod;
    }
 
    return sum % mod;
}
 
// Driver code
int main()
{
    int arr[] = { 5, 3, 1, 4, 3 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << ways(0, arr, n) << endl;
 
    return 0;
}


Java




// Java implementation of
// the above approach
import java.io.*;
 
class GFG
{
static int mod = 1000000000;
 
// Find the number of ways
// to reach the end
static int ways(int i,
                int arr[], int n)
{
    // Base case
    if (i == n - 1)
        return 1;
 
    int sum = 0;
 
    // Recursive structure
    for (int j = 1; j + i < n &&
                    j <= arr[i]; j++)
    {
        sum += (ways(i + j,
                     arr, n)) % mod;
        sum %= mod;
    }
    return sum % mod;
}
 
// Driver code
public static void main (String[] args)
{
    int arr[] = { 5, 3, 1, 4, 3 };
     
    int n = arr.length;
 
    System.out.println (ways(0, arr, n));
}
}
 
// This code is contributed by ajit


Python3




# Python3 implementation of
# the above approach
 
mod = 1e9 + 7;
 
# Find the number of ways
# to reach the end
def ways(i, arr, n):
     
    # Base case
    if (i == n - 1):
        return 1;
 
    sum = 0;
 
    # Recursive structure
    for j in range(1, arr[i] + 1):
        if(i + j < n):
            sum += (ways(i + j, arr, n)) % mod;
            sum %= mod;
 
    return int(sum % mod);
 
# Driver code
if __name__ == '__main__':
    arr = [5, 3, 1, 4, 3];
 
    n = len(arr);
 
    print(ways(0, arr, n));
 
# This code is contributed by PrinciRaj1992


C#




// C# implementation of
// the above approach
using System;
     
class GFG
{
static int mod = 1000000000;
 
// Find the number of ways
// to reach the end
static int ways(int i,
                int []arr, int n)
{
    // Base case
    if (i == n - 1)
        return 1;
 
    int sum = 0;
 
    // Recursive structure
    for (int j = 1; j + i < n &&
                    j <= arr[i]; j++)
    {
        sum += (ways(i + j,
                     arr, n)) % mod;
        sum %= mod;
    }
    return sum % mod;
}
 
// Driver code
public static void Main (String[] args)
{
    int []arr = { 5, 3, 1, 4, 3 };
     
    int n = arr.Length;
 
    Console.WriteLine(ways(0, arr, n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Javascript implementation of the above approach
     
    let mod = 1000000000;
   
    // Find the number of ways
    // to reach the end
    function ways(i, arr, n)
    {
        // Base case
        if (i == n - 1)
            return 1;
 
        let sum = 0;
 
        // Recursive structure
        for (let j = 1; j + i < n && j <= arr[i]; j++)
        {
            sum += (ways(i + j, arr, n)) % mod;
            sum %= mod;
        }
        return sum % mod;
    }
     
    let arr = [ 5, 3, 1, 4, 3 ];
       
    let n = arr.length;
   
    document.write(ways(0, arr, n));
     
</script>


Output: 

6

 

Efficient Approach: In the previous approach, there are some calculations that are being done more than once. It will be better to store these values in a dp array and dp[i] will store the number of paths starting at index i and ending at the end of the array.
Hence dp[0] will be the solution to the problem.
Below is the implementation of the approach:
 

C++




// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
const int mod = 1e9 + 7;
 
// find the number of ways to reach the end
int ways(int arr[], int n)
{
    // dp to store value
    int dp[n + 1];
 
    // base case
    dp[n - 1] = 1;
 
    // Bottom up dp structure
    for (int i = n - 2; i >= 0; i--) {
        dp[i] = 0;
 
        // F[i] is dependent of
        // F[i+1] to F[i+k]
        for (int j = 1; ((j + i) < n
                         && j <= arr[i]);
             j++) {
            dp[i] += dp[i + j];
            dp[i] %= mod;
        }
    }
 
    // Return value of dp[0]
    return dp[0] % mod;
}
 
// Driver code
int main()
{
    int arr[] = { 5, 3, 1, 4, 3 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << ways(arr, n) % mod << endl;
    return 0;
}


Java




// Java implementation of above approach
class GFG
{
    static final int mod = (int)(1e9 + 7);
     
    // find the number of ways to reach the end
    static int ways(int arr[], int n)
    {
        // dp to store value
        int dp[] = new int[n + 1];
     
        // base case
        dp[n - 1] = 1;
     
        // Bottom up dp structure
        for (int i = n - 2; i >= 0; i--)
        {
            dp[i] = 0;
     
            // F[i] is dependent of
            // F[i+1] to F[i+k]
            for (int j = 1; ((j + i) < n &&
                              j <= arr[i]); j++)
            {
                dp[i] += dp[i + j];
                dp[i] %= mod;
            }
        }
     
        // Return value of dp[0]
        return dp[0] % mod;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 5, 3, 1, 4, 3 };
     
        int n = arr.length;
     
        System.out.println(ways(arr, n) % mod);
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of above approach
mod = 10**9 + 7
 
# find the number of ways to reach the end
def ways(arr, n):
     
    # dp to store value
    dp = [0] * (n + 1)
     
    # base case
    dp[n - 1] = 1
     
    # Bottom up dp structure
    for i in range(n - 2, -1, -1):
        dp[i] = 0
         
        # F[i] is dependent of
        # F[i + 1] to F[i + k]
        j = 1
        while((j + i) < n and j <= arr[i]):
            dp[i] += dp[i + j]
            dp[i] %= mod
            j += 1
     
    # Return value of dp[0]
    return dp[0] % mod
 
# Driver code
arr = [5, 3, 1, 4, 3 ]
n = len(arr)
print(ways(arr, n) % mod)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of above approach
using System;
     
class GFG
{
    static readonly int mod = (int)(1e9 + 7);
     
    // find the number of ways to reach the end
    static int ways(int []arr, int n)
    {
        // dp to store value
        int []dp = new int[n + 1];
     
        // base case
        dp[n - 1] = 1;
     
        // Bottom up dp structure
        for (int i = n - 2; i >= 0; i--)
        {
            dp[i] = 0;
     
            // F[i] is dependent of
            // F[i+1] to F[i+k]
            for (int j = 1; ((j + i) < n &&
                              j <= arr[i]); j++)
            {
                dp[i] += dp[i + j];
                dp[i] %= mod;
            }
        }
     
        // Return value of dp[0]
        return dp[0] % mod;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int []arr = { 5, 3, 1, 4, 3 };
     
        int n = arr.Length;
     
        Console.WriteLine(ways(arr, n) % mod);
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
    // Javascript implementation
    // of above approach
     
    let mod = (1e9 + 7);
       
    // find the number of ways
    // to reach the end
    function ways(arr, n)
    {
        // dp to store value
        let dp = new Array(n + 1);
        dp.fill(0);
       
        // base case
        dp[n - 1] = 1;
       
        // Bottom up dp structure
        for (let i = n - 2; i >= 0; i--)
        {
            dp[i] = 0;
       
            // F[i] is dependent of
            // F[i+1] to F[i+k]
            for (let j = 1; ((j + i)
            < n && j <= arr[i]); j++)
            {
                dp[i] += dp[i + j];
                dp[i] %= mod;
            }
        }
       
        // Return value of dp[0]
        return dp[0] % mod;
    }
     
    let arr = [ 5, 3, 1, 4, 3 ];
       
    let n = arr.length;
 
    document.write(ways(arr, n) % mod);
     
</script>


Output: 

6

 

Time Complexity: O(K)

Auxiliary Space: O(n)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments