Given an array A consisting of positive integer, of size N. If the element in the array at index i is K then you can jump between index ranges (i + 1) to (i + K).
The task is to find the number of possible ways to reach the end with module 109 + 7.
The starting position is considered as index 0.
Examples:
Input: A = {5, 3, 1, 4, 3}
Output: 6
Input: A = {2, 3, 1, 1, 2}
Output: 4
Naive Approach: We can form a recursive structure to solve the problem.
Let F[i] denotes the number of paths starting at index i, at every index i if the element A[i] is K then the total number of ways the jump can be performed is:
F(i) = F(i+1) + F(i+2) +...+ F(i+k), where i + k <= n, where F(n) = 1
By using this recursive formula we can solve the problem:
C++
// C++ implementation of // the above approach #include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; // Find the number of ways // to reach the end int ways( int i, int arr[], int n) { // Base case if (i == n - 1) return 1; int sum = 0; // Recursive structure for ( int j = 1; j + i < n && j <= arr[i]; j++) { sum += (ways(i + j, arr, n)) % mod; sum %= mod; } return sum % mod; } // Driver code int main() { int arr[] = { 5, 3, 1, 4, 3 }; int n = sizeof (arr) / sizeof (arr[0]); cout << ways(0, arr, n) << endl; return 0; } |
Java
// Java implementation of // the above approach import java.io.*; class GFG { static int mod = 1000000000 ; // Find the number of ways // to reach the end static int ways( int i, int arr[], int n) { // Base case if (i == n - 1 ) return 1 ; int sum = 0 ; // Recursive structure for ( int j = 1 ; j + i < n && j <= arr[i]; j++) { sum += (ways(i + j, arr, n)) % mod; sum %= mod; } return sum % mod; } // Driver code public static void main (String[] args) { int arr[] = { 5 , 3 , 1 , 4 , 3 }; int n = arr.length; System.out.println (ways( 0 , arr, n)); } } // This code is contributed by ajit |
Python3
# Python3 implementation of # the above approach mod = 1e9 + 7 ; # Find the number of ways # to reach the end def ways(i, arr, n): # Base case if (i = = n - 1 ): return 1 ; sum = 0 ; # Recursive structure for j in range ( 1 , arr[i] + 1 ): if (i + j < n): sum + = (ways(i + j, arr, n)) % mod; sum % = mod; return int ( sum % mod); # Driver code if __name__ = = '__main__' : arr = [ 5 , 3 , 1 , 4 , 3 ]; n = len (arr); print (ways( 0 , arr, n)); # This code is contributed by PrinciRaj1992 |
C#
// C# implementation of // the above approach using System; class GFG { static int mod = 1000000000; // Find the number of ways // to reach the end static int ways( int i, int []arr, int n) { // Base case if (i == n - 1) return 1; int sum = 0; // Recursive structure for ( int j = 1; j + i < n && j <= arr[i]; j++) { sum += (ways(i + j, arr, n)) % mod; sum %= mod; } return sum % mod; } // Driver code public static void Main (String[] args) { int []arr = { 5, 3, 1, 4, 3 }; int n = arr.Length; Console.WriteLine(ways(0, arr, n)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation of the above approach let mod = 1000000000; // Find the number of ways // to reach the end function ways(i, arr, n) { // Base case if (i == n - 1) return 1; let sum = 0; // Recursive structure for (let j = 1; j + i < n && j <= arr[i]; j++) { sum += (ways(i + j, arr, n)) % mod; sum %= mod; } return sum % mod; } let arr = [ 5, 3, 1, 4, 3 ]; let n = arr.length; document.write(ways(0, arr, n)); </script> |
6
Efficient Approach: In the previous approach, there are some calculations that are being done more than once. It will be better to store these values in a dp array and dp[i] will store the number of paths starting at index i and ending at the end of the array.
Hence dp[0] will be the solution to the problem.
Below is the implementation of the approach:
C++
// C++ implementation #include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; // find the number of ways to reach the end int ways( int arr[], int n) { // dp to store value int dp[n + 1]; // base case dp[n - 1] = 1; // Bottom up dp structure for ( int i = n - 2; i >= 0; i--) { dp[i] = 0; // F[i] is dependent of // F[i+1] to F[i+k] for ( int j = 1; ((j + i) < n && j <= arr[i]); j++) { dp[i] += dp[i + j]; dp[i] %= mod; } } // Return value of dp[0] return dp[0] % mod; } // Driver code int main() { int arr[] = { 5, 3, 1, 4, 3 }; int n = sizeof (arr) / sizeof (arr[0]); cout << ways(arr, n) % mod << endl; return 0; } |
Java
// Java implementation of above approach class GFG { static final int mod = ( int )(1e9 + 7 ); // find the number of ways to reach the end static int ways( int arr[], int n) { // dp to store value int dp[] = new int [n + 1 ]; // base case dp[n - 1 ] = 1 ; // Bottom up dp structure for ( int i = n - 2 ; i >= 0 ; i--) { dp[i] = 0 ; // F[i] is dependent of // F[i+1] to F[i+k] for ( int j = 1 ; ((j + i) < n && j <= arr[i]); j++) { dp[i] += dp[i + j]; dp[i] %= mod; } } // Return value of dp[0] return dp[ 0 ] % mod; } // Driver code public static void main (String[] args) { int arr[] = { 5 , 3 , 1 , 4 , 3 }; int n = arr.length; System.out.println(ways(arr, n) % mod); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of above approach mod = 10 * * 9 + 7 # find the number of ways to reach the end def ways(arr, n): # dp to store value dp = [ 0 ] * (n + 1 ) # base case dp[n - 1 ] = 1 # Bottom up dp structure for i in range (n - 2 , - 1 , - 1 ): dp[i] = 0 # F[i] is dependent of # F[i + 1] to F[i + k] j = 1 while ((j + i) < n and j < = arr[i]): dp[i] + = dp[i + j] dp[i] % = mod j + = 1 # Return value of dp[0] return dp[ 0 ] % mod # Driver code arr = [ 5 , 3 , 1 , 4 , 3 ] n = len (arr) print (ways(arr, n) % mod) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# implementation of above approach using System; class GFG { static readonly int mod = ( int )(1e9 + 7); // find the number of ways to reach the end static int ways( int []arr, int n) { // dp to store value int []dp = new int [n + 1]; // base case dp[n - 1] = 1; // Bottom up dp structure for ( int i = n - 2; i >= 0; i--) { dp[i] = 0; // F[i] is dependent of // F[i+1] to F[i+k] for ( int j = 1; ((j + i) < n && j <= arr[i]); j++) { dp[i] += dp[i + j]; dp[i] %= mod; } } // Return value of dp[0] return dp[0] % mod; } // Driver code public static void Main (String[] args) { int []arr = { 5, 3, 1, 4, 3 }; int n = arr.Length; Console.WriteLine(ways(arr, n) % mod); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation // of above approach let mod = (1e9 + 7); // find the number of ways // to reach the end function ways(arr, n) { // dp to store value let dp = new Array(n + 1); dp.fill(0); // base case dp[n - 1] = 1; // Bottom up dp structure for (let i = n - 2; i >= 0; i--) { dp[i] = 0; // F[i] is dependent of // F[i+1] to F[i+k] for (let j = 1; ((j + i) < n && j <= arr[i]); j++) { dp[i] += dp[i + j]; dp[i] %= mod; } } // Return value of dp[0] return dp[0] % mod; } let arr = [ 5, 3, 1, 4, 3 ]; let n = arr.length; document.write(ways(arr, n) % mod); </script> |
6
Time Complexity: O(K)
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!