Given an integer N, the task is to find the number of perfect squares of length N.
Examples:
Input: N = 1
Output: 3
Explanation: The single digit perfect squares are 1, 4 and 9.Input: N = 2
Output: 6
Explanation: The two-digit perfect squares are 16, 25, 36, 49, 64 and 81.
Naive Approach: In order to solve this problem, we can check all the numbers between 10( N – 1 ) and 10N – 1 and increment the counter whenever we encounter a perfect square.
Below is the implementation of the above approach:
C++
// C++ Program to count perfect // squares of given length #include <bits/stdc++.h> using namespace std; // Function to check if a // number is perfect square bool isPerfectSquare( long double x) { // Find floating point value of // square root of x. long double sr = sqrt (x); // If square root is an integer return ((sr - floor (sr)) == 0); } // Function to return the count of // n digit perfect squares int countSquares( int n) { // Initialize result int cnt = 0; // Traverse through all numbers // of n digits for ( int i = pow (10, (n - 1)); i < pow (10, n); i++) { // Check if current number // 'i' is perfect square if (i != 0 && isPerfectSquare(i)) cnt++; } return cnt; } // Driver code int main() { int n = 3; cout << countSquares(n); return 0; } |
Java
// Java Program to count perfect // squares of given length import java.io.*; import java.util.*; class GFG{ // Function to check if a // number is perfect square static boolean isPerfectSquare( double x) { // Find floating point value of // square root of x. double sr = Math.sqrt(x); // If square root is an integer return ((sr - Math.floor(sr)) == 0 ); } // Function to return the count of // n digit perfect squares static int countSquares( int n) { // Initialize result int cnt = 0 ; // Traverse through all numbers // of n digits for ( int i = ( int ) Math.pow( 10 , (n - 1 )); i < Math.pow( 10 , n); i++) { // Check if current number // 'i' is perfect square if (i != 0 && isPerfectSquare(i)) cnt++; } return cnt; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.print(countSquares(n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 Program to count perfect # squares of given length import math; # Function to check if a # number is perfect square def isPerfectSquare(x): # Find floating point value of # square root of x. sr = math.sqrt(x); # If square root is an integer return ((sr - math.floor(sr)) = = 0 ); # Function to return the count of # n digit perfect squares def countSquares(n): # Initialize result cnt = 0 ; # Traverse through all numbers # of n digits for i in range ( int (math. pow ( 10 , (n - 1 ))), int (math. pow ( 10 , n))): # Check if current number # 'i' is perfect square if (i ! = 0 and isPerfectSquare(i)): cnt + = 1 ; return cnt; # Driver code n = 3 ; print (countSquares(n)); # This code is contributed by Akanksha_Rai |
C#
// C# program to count perfect // squares of given length using System; class GFG{ // Function to check if a // number is perfect square static bool isPerfectSquare( double x) { // Find floating point value of // square root of x. double sr = Math.Sqrt(x); // If square root is an integer return ((sr - Math.Floor(sr)) == 0); } // Function to return the count of // n digit perfect squares static int countSquares( int n) { // Initialize result int cnt = 0; // Traverse through all numbers // of n digits for ( int i = ( int ) Math.Pow(10, (n - 1)); i < Math.Pow(10, n); i++) { // Check if current number // 'i' is perfect square if (i != 0 && isPerfectSquare(i)) cnt++; } return cnt; } // Driver code public static void Main(String[] args) { int n = 3; Console.Write(countSquares(n)); } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // Javascript Program to count perfect // squares of given length // Function to check if a // number is perfect square function isPerfectSquare(x) { // Find floating point value of // square root of x. let sr = Math.sqrt(x); // If square root is an integer return ((sr - Math.floor(sr)) == 0); } // Function to return the count of // n digit perfect squares function countSquares(n) { // Initialize result let cnt = 0; // Traverse through all numbers // of n digits for (let i = Math.pow(10, (n - 1)); i < Math.pow(10, n); i++) { // Check if current number // 'i' is perfect square if (i != 0 && isPerfectSquare(i)) cnt++; } return cnt; } // Driver code let n = 3; document.write(countSquares(n)); // This code is contributed by subhammahato348. </script> |
22
Time Complexity: O(10n*log(n))
Auxiliary Space: O(1)
Efficient Approach: In order to solve this problem we can simply find the number of perfect squares of length N using a formula:
- A number n has d digits if
- Hence, a perfect square n2 has d digits if or
- Thus, the required answer for count of perfect squares of N digits is
Below is the implementation of the above approach:
C++
// C++ Program to count // perfect squares of given length #include <bits/stdc++.h> using namespace std; // Function to return the count of // n digit perfect squares int countSquares( int n) { int r = ceil ( sqrt ( pow (10, n))); int l = ceil ( sqrt ( pow (10, n - 1))); return r - l; } // Driver code int main() { int n = 3; cout << countSquares(n); return 0; } |
Java
// Java Program to count perfect // squares of given length import java.io.*; import java.util.*; class GFG{ // Function to return the count // of n digit perfect squares static int countSquares( int n) { int r = ( int ) Math.ceil(Math.sqrt (Math.pow( 10 , n))); int l = ( int ) Math.ceil(Math.sqrt (Math.pow( 10 , n - 1 ))); return r - l; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.print(countSquares(n)); } } // This code is contributed by Rohit_ranjan |
Python3
# Python3 program to count perfect # squares of given length import math # Function to return the count # of n digit perfect squares def countSquares(n): r = math.ceil(math.sqrt (math. pow ( 10 , n))); l = math.ceil(math.sqrt (math. pow ( 10 , n - 1 ))); return r - l; # Driver code n = 3 ; print (countSquares(n)); # This code is contributed by grand_master |
C#
// C# Program to count perfect // squares of given length using System; class GFG{ // Function to return the count // of n digit perfect squares static int countSquares( int n) { int r = ( int ) Math.Ceiling(Math.Sqrt (Math.Pow(10, n))); int l = ( int ) Math.Ceiling(Math.Sqrt (Math.Pow(10, n - 1))); return r - l; } // Driver code public static void Main() { int n = 3; Console.Write(countSquares(n)); } } // This code is contributed by Nidhi_Biet |
Javascript
<script> // JavaScript Program to count // perfect squares of given length // Function to return the count of // n digit perfect squares function countSquares(n) { let r = Math.ceil(Math.sqrt(Math.pow(10, n))); let l = Math.ceil(Math.sqrt(Math.pow(10, n - 1))); return r - l; } // Driver code let n = 3; document.write(countSquares(n)); </script> |
22
Time Complexity: O(log N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!