Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIRearrangement of a number which is also divisible by it

Rearrangement of a number which is also divisible by it

Given a number n, we need to rearrange all its digits such that the new arrangement is divisible by n. Also, the new number should not be equal to x. If no such rearrangement is possible, print -1. Examples:

Input : n = 1035
Output : 3105
The result 3105 is divisible by
given n and has the same set of digits.

Input : n = 1782
Output : m = 7128

Simple Approach : Find all the permutation of given n and then check whether it is divisible by n or not also check that new permutation should not be equal to n. Efficient Approach : Let’s suppose that y is our result then y = m * n, also we know that y must be a rearrangement of digits of n so we can say now restrict m (the multiplier) as per given conditions. 1) y has the same number of digits as n has. So, m must be less than 10. 2) y must not be equal to n. So, m will be greater than 1. So we get the multiplier m in the range [2,9]. So we will find all the possible y and then check that should y has the same digits as n or not. 

C++




// CPP program for finding rearrangement of n
// that is divisible  by n
#include<bits/stdc++.h>
using namespace std;
 
// perform hashing for given n
void storeDigitCounts(int n, vector<int> &hash)
{
    // perform hashing
    while (n)
    {
        hash[n%10]++;
        n /= 10;
    }
}
 
// check whether any arrangement exists
int rearrange (int n)
{
    // Create a hash for given number n
    // The hash is of size 10 and stores
    // count of each digit in n.
    vector<int> hash_n(10, 0);
    storeDigitCounts(n, hash_n);
     
    // check for all possible multipliers
    for (int mult=2; mult<10; mult++)
    {
        int curr = n * mult;
         
        vector<int> hash_curr(10, 0);
        storeDigitCounts(curr, hash_curr);
         
        // check hash table for both.
        // Please refer below link for help
        // of equal()
        if (equal(hash_n.begin(), hash_n.end(),
                             hash_curr.begin()))
            return curr;
    }
    return -1;
}
 
// driver program
int main()
{
    int n = 10035;
    cout << rearrange(n);
    return 0;
}


Java




// Java program for finding rearrangement of n
// that is divisible  by n
import java.util.*;
 
class GFG
{
  // perform hashing for given n
  static int[] storeDigitCounts(int n)
  {
    int arr[] = new int[10];
    for (int i = 0; i < 10; i++)
      arr[i] = 0;
    // perform hashing
    while (n > 0)
    {
      arr[n % 10]++;
      n /= 10;
    }
    return arr;
  }
 
 
  // check whether any arrangement exists
  static int rearrange (int n)
  {
    // Create a hash for given number n
    // The hash is of size 10 and stores
    // count of each digit in n.
    int[] hash = storeDigitCounts(n);
 
    // check for all possible multipliers
    for (int mult=2; mult<10; mult++)
    {
      int curr = n*mult;
 
      int[] hash_curr = storeDigitCounts(curr);
 
      // check hash table for both.
      int ind;
      for (ind = 0; ind < 10; ind++)
      {
        if (hash_curr[ind] != hash[ind])
          break;
      }
      if (ind == 10return curr;
 
    }
    return -1;
  }
 
  // driver program
  public static void main(String[] args)
  {
    int n = 10035;
    System.out.println(rearrange(n));
  }
}
 
// This code is contributed by phasing17


Python3




# Python3 program for finding rearrangement
# of n that is divisible by n
 
# Perform hashing for given n
def storeDigitCounts(n, Hash):
 
    # perform hashing
    while n > 0:
     
        Hash[n % 10] += 1
        n //= 10
 
# check whether any arrangement exists
def rearrange(n):
 
    # Create a hash for given number n
    # The hash is of size 10 and stores
    # count of each digit in n.
    hash_n = [0] * 10
    storeDigitCounts(n, hash_n)
     
    # check for all possible multipliers
    for mult in range(2, 10):
     
        curr = n * mult
         
        hash_curr = [0] * 10
        storeDigitCounts(curr, hash_curr)
         
        # check hash table for both.
        if hash_n == hash_curr:
            return curr
     
    return -1
 
# Driver Code
if __name__ == "__main__":
 
    n = 10035
    print(rearrange(n))
     
# This code is contributed by Rituraj Jain


C#




// C# program for finding rearrangement of n
// that is divisible  by n
using System;
using System.Collections.Generic;
 
class GFG
{
 
  // perform hashing for given n
  static int[] storeDigitCounts(int n)
  {
    int[] arr = new int[10];
    for (int i = 0; i < 10; i++)
      arr[i] = 0;
    // perform hashing
    while (n > 0) {
      arr[n % 10]++;
      n /= 10;
    }
    return arr;
  }
 
  // check whether any arrangement exists
  static int rearrange(int n)
  {
    // Create a hash for given number n
    // The hash is of size 10 and stores
    // count of each digit in n.
    int[] hash = storeDigitCounts(n);
 
    // check for all possible multipliers
    for (int mult = 2; mult < 10; mult++) {
      int curr = n * mult;
 
      int[] hash_curr = storeDigitCounts(curr);
 
      // check hash table for both.
      int ind;
      for (ind = 0; ind < 10; ind++) {
        if (hash_curr[ind] != hash[ind])
          break;
      }
      if (ind == 10)
        return curr;
    }
    return -1;
  }
 
  // driver program
  public static void Main(string[] args)
  {
    int n = 10035;
    Console.WriteLine(rearrange(n));
  }
}
 
// This code is contributed by phasing17


Javascript




// JavaScript program for finding rearrangement
// of n that is divisible by n
 
// Perform hashing for given n
function storeDigitCounts(n, Hash)
{
    // perform hashing
    while (n > 0)
    {
        Hash[n % 10] += 1;
        n = Math.floor(n / 10);
    }
    return Hash;
}
 
// check whether any arrangement exists
function rearrange(n)
{
    // Create a hash for given number n
    // The hash is of size 10 and stores
    // count of each digit in n.
    let hash_n = new Array(10).fill(0);
    hash_n = storeDigitCounts(n, hash_n);
     
    // check for all possible multipliers
    for (var mult = 2; mult < 10; mult++)
    {
        let curr = n * mult;
         
        let hash_curr = new Array(10).fill(0);
        hash_curr = storeDigitCounts(curr, hash_curr) ;
         
        // check hash table for both.
        if (JSON.stringify(hash_curr)==JSON.stringify(hash_n))
            return curr ;
    }
     
    return -1;
}
 
// Driver Code
let n = 10035;
console.log(rearrange(n));
     
// This code is contributed by phasing17


Output:

30105

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments