Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIMaximize the rightmost element of an array in k operations in Linear...

Maximize the rightmost element of an array in k operations in Linear Time

Given an array arr[ ] of size N and an integer p, the task is to find maximum possible value of rightmost element of array arr[ ] performing at most k operations.In one operation decrease arr[i] by p and increase arr[i+1] by p.

Examples:

Input: N = 4, p = 2, k = 5, arr = {3, 8, 1, 4}
Output: 8
Explanation: 
                    following operation can be performed to achieve max valued rightmost element:
                    1. decrease arr[2] by 2 and increase arr[3] by 2, arr = {3, 6, 3, 4}
                    2. decrease arr[2] by 2 and increase arr[3] by 2, arr = {3, 4, 5, 4}
                    3. decrease arr[2] by 2 and increase arr[3] by 2, arr = {3, 2, 5, 4}
                    4. decrease arr[3] by 2 and increase arr[4] by 2, arr = {3, 2, 3, 6}
                    5. decrease arr[3] by 2 and increase arr[4] by 2, arr = {3, 2, 1, 8}

                    Hence, maximum possible value of rightmost element will be 8.

Input: N = 5, p = 1, k = 2, arr = {1, 2, 3, 4, 5}
Output: 7

Naive Approach: This problem can solved naively using greedy approach. follow the steps below to solve the problem:

  • Run a while loop, until is k is greater than 0.
  • Run a for loop inside while loop, for i in range [N-2, 0].
  • Check if arr[i] is greater than 1, increase arr[i+1] by p and decrease arr[i] by p and break for loop.
  • Decrease the value of k by 1.
  • Print arr[N-1].

Below is the implementation of the above approach:

C++




// C++ program for above approach
#include <iostream>
using namespace std;
 
// Function to calculate maximum value of
// Rightmost element
void maxRightmostElement(int N, int k, int p, int arr[]){
   
     // Calculating maximum value of
     // Rightmost element
     while(k)
         {
        
          for(int i=N-2;i>=0;i--)
              {
             
                // Checking if arr[i] is operationable
                if(arr[i]>= p)
                  {
                      // Performing operation of i-th element
                      arr[i]=arr[i]-p;
                   
                      arr[i+1]=arr[i+1]+p;
                   
                      break;
                   
                  
             
              }
        
         // Decreasing the value of k by 1
         k--;
        }
   
        // Printing rightmost element
        cout<<arr[N-1]<<endl;
}
 
// Driver Code
int main() {
     
    // Given Input
    int N = 4, p = 2, k = 5, arr[] = {3, 8, 1, 4};
   
    // Function Call
    maxRightmostElement(N, k, p, arr);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
class GFG {
 
    // Function to calculate maximum value of
    // Rightmost element
    static int maxRightmostElement(int N, int k, int p,
                                   int arr[])
    {
       
        // Calculating maximum value of
        // Rightmost element
        while (k > 0) {
 
            for (int i = N - 2; i >= 0; i--) {
 
                // Checking if arr[i] is operationable
                if (arr[i] >= p)
                {
                   
                    // Performing operation of i-th element
                    arr[i] = arr[i] - p;
 
                    arr[i + 1] = arr[i + 1] + p;
 
                    break;
                }
            }
 
            // Decreasing the value of k by 1
            k--;
        }
 
        // returning the rightmost element
        return arr[N - 1];
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given Input
        int N = 4, k = 5, p = 2;
        int arr[] = { 3, 8, 1, 4 };
       
        // Function Call
        System.out.println(
            maxRightmostElement(N, k, p, arr));
    }
}
 
// This code is contributed by dwivediyash


Python3




# Python program for the above approach
 
# Function to calculate maximum value of
# Rightmost element
def maxRightmostElement(N, k, p, arr):
   
    # Calculating maximum value of
    # Rightmost element
    while(k) :
        
        for i in range(N - 2, -1, -1) :
             
            # Checking if arr[i] is operationable
            if(arr[i] >= p) :
                 
                # Performing operation of i-th element
                arr[i] = arr[i] - p
                   
                arr[i + 1] = arr[i + 1] + p
                   
                break
                   
        # Decreasing the value of k by 1
        k = k - 1
         
    # Printing rightmost element
    print(arr[N-1])
 
 
# Driver Code
 
# Given Input
N = 4
p = 2
k = 5
arr = [3, 8, 1, 4]
   
# Function Call
maxRightmostElement(N, k, p, arr)
 
# This code is contributed by sanjoy_62.


C#




using System;
 
public class GFG {
 
    // Function to calculate maximum value of
    // Rightmost element
    static int maxRightmostElement(int N, int k, int p,
                                   int []arr)
    {
 
        // Calculating maximum value of
        // Rightmost element
        while (k > 0) {
 
            for (int i = N - 2; i >= 0; i--) {
 
                // Checking if arr[i] is operationable
                if (arr[i] >= p) {
 
                    // Performing operation of i-th element
                    arr[i] = arr[i] - p;
 
                    arr[i + 1] = arr[i + 1] + p;
 
                    break;
                }
            }
 
            // Decreasing the value of k by 1
            k--;
        }
 
        // returning the rightmost element
        return arr[N - 1];
    }
 
    // Driver Code
    static public void Main()
    {
       
        // Given Input
        int N = 4, k = 5, p = 2;
        int[] arr = { 3, 8, 1, 4 };
 
        // Function Call
        Console.WriteLine(
            maxRightmostElement(N, k, p, arr));
    }
}
 
// This code is contributed by maddler.


Javascript




  <script>
        // JavaScript Program to implement
        // the above approach
 
 
        // Function to calculate maximum value of
        // Rightmost element
        function maxRightmostElement(N, k, p, arr) {
 
            // Calculating maximum value of
            // Rightmost element
            while (k) {
 
                for (let i = N - 2; i >= 0; i--) {
 
                    // Checking if arr[i] is operationable
                    if (arr[i] >= p) {
                        // Performing operation of i-th element
                        arr[i] = arr[i] - p;
 
                        arr[i + 1] = arr[i + 1] + p;
 
                        break;
 
                    }
 
                }
 
                // Decreasing the value of k by 1
                k--;
            }
 
            // Printing rightmost element
            document.write(arr[N - 1] + "<br>");
        }
 
        // Driver Code
 
 
        // Given Input
        let N = 4, p = 2, k = 5, arr = [3, 8, 1, 4];
 
        // Function Call
        maxRightmostElement(N, k, p, arr);
 
// This code is contributed by Potta Lokesh
    </script>


Output

8

Time Complexity: O(N*k)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized by observing the fact that, i-th element of array arr[ ] can contribute 2 to the element arr[N-1] in N-1-i operations. follow the steps below to solve the problem:

  • Iterate a loop, for i in range [N-2, 0].
  • Initialize ans as arr[N-1] to store maximum value of rightmost element.
  • Find minimum contribution of i-th element say d as, d = min(a[i]/2, k/(N-1-i)).
  • Decrease k by d*(N-1-i) and increase ans by d*2.
  • Print ans, it will be final step.

C++




// C++ program for above approach
#include <iostream>
using namespace std;
 
// Function to calculate maximum value of
// Rightmost element
void maxRightmostElement(int N, int k, int arr[]){
    
     // Initializing ans to store
     // Maximum valued rightmost element
     int ans = arr[N-1];
     
     // Calculating maximum value of
     // Rightmost element
     for(int i=N-2; i>=0; i--)
       {
        int d = min(arr[i]/2, k/(N-1-i));
        
        k-=d*(N-1-i);
        
        ans+=d*2;
        }
 
        // Printing rightmost element
        cout<<ans<<endl;
}
 
// Driver Code
int main() {
     
    // Given Input
    int N = 4, k = 5, arr[] = {3, 8, 1, 4};
   
    // Function Call
    maxRightmostElement(N, k, arr);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
class GFG {
 
  // Function to calculate maximum value of
  // Rightmost element
  static int maxRightmostElement(int N, int k, int p, int arr[])
  {
     
    // Initializing ans to store
    // Maximum valued rightmost element
    int ans = arr[N - 1];
 
    // Calculating maximum value of
    // Rightmost element
    for (int i = N - 2; i >= 0; i--) {
      int d = Math.min(arr[i] / p, k / (N - 1 - i));
 
      k -= d * (N - 1 - i);
 
      ans += d * p;
    }
 
    // returning rightmost element
    return  ans;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    // Given Input
    int N = 4, k = 5, p = 2;
    int arr[] = { 3, 8, 1, 4 };
    // Function Call
    System.out.println(maxRightmostElement(N, k, p, arr));
  }
}
 
// This code is contributed by dwivediyash


Python3




# Python 3 program for above approach
 
# Function to calculate maximum value of
# Rightmost element
def maxRightmostElement(N, k, arr):
   
    # Initializing ans to store
    # Maximum valued rightmost element
    ans = arr[N-1]
     
     # Calculating maximum value of
     # Rightmost element
    i = N - 2
    while(i >= 0):
        d = min(arr[i]//2, k//(N-1-i))
        
        k -= d * (N - 1 - i)
        
        ans+=d*2
 
        # Printing rightmost element
        i -= 1
    print(ans,end = " ")
      
 
# Driver Code
if __name__ == '__main__':
   
    # Given Input
    N = 4
    k = 5
    arr = [3, 8, 1, 4]
   
    # Function Call
    maxRightmostElement(N, k, arr)
     
    # This code is contributed by SURENDRA_GANGWAR.


C#




// C# program for the above approach
using System;
 
public class GFG {
 
  // Function to calculate maximum value of
  // Rightmost element
  static int maxRightmostElement(int N, int k, int p, int []arr)
  {
     
    // Initializing ans to store
    // Maximum valued rightmost element
    int ans = arr[N - 1];
 
    // Calculating maximum value of
    // Rightmost element
    for (int i = N - 2; i >= 0; i--) {
      int d = Math.Min(arr[i] / p, k / (N - 1 - i));
 
      k -= d * (N - 1 - i);
 
      ans += d * p;
    }
 
    // returning rightmost element
    return  ans;
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
     
    // Given Input
    int N = 4, k = 5, p = 2;
    int []arr = { 3, 8, 1, 4 };
     
    // Function Call
    Console.WriteLine(maxRightmostElement(N, k, p, arr));
  }
}
 
// This code is contributed by AnkThon


Javascript




<script>
// JavaScript program for the above approach
 
  // Function to calculate maximum value of
  // Rightmost element
  function maxRightmostElement( N,  k,  p,  arr)
  {
     
    // Initializing ans to store
    // Maximum valued rightmost element
    var ans = arr[N - 1];
 
    // Calculating maximum value of
    // Rightmost element
    for (var i = N - 2; i >= 0; i--) {
      var d = Math.min(arr[i] / p, k / (N - 1 - i));
 
      k -= d * (N - 1 - i);
 
      ans += d * p;
    }
 
    // returning rightmost element
    return  ans;
  }
 
  // Driver Code
    // Given Input
    var N = 4, k = 3.5, p = 2;
    var arr = [ 3, 8, 1, 4 ];
    // Function Call
    document.write(maxRightmostElement(N, k, p, arr));
   
// This code is contributed by shivanisinghss2110
 
</script>


Output

8

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments