Given a positive integer N, the task is to find the number of Asymmetric Relations in a set of N elements. Since the number of relations can be very large, print it modulo 109+7.
A relation R on a set A is called Asymmetric if and only if x R y exists, then y
Rx for every (x, y) € A.
For Example: If set A = {a, b}, then R = {(a, b)} is asymmetric relation.
Examples:
Input: N = 2
Output: 3
Explanation: Considering the set {1, 2}, the total number of possible asymmetric relations are {{}, {(1, 2)}, {(2, 1)}}.Input: N = 5
Output: 59049
Approach: The given problem can be solved based on the following observations:
- A relation R on a set A is a subset of the Cartesian product of a set, i.e. A * A with N2 elements.
- There are total N pairs of type (x, x) that are present in the Cartesian product, where any of (x, x) should not be included in the subset.
- Now, one is left with (N2 – N) elements of the Cartesian product.
- To satisfy the property of asymmetric relation, one has three possibilities of either to include only of type (x, y) or only of type (y, x) or none from a single group into the subset.
- Hence, the total number of possible asymmetric relations is equal to 3 (N2 – N) / 2.
Therefore, the idea is to print the value of 3(N2 – N)/2 modulo 109 + 7 as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <iostream> using namespace std; const int mod = 1000000007; // Function to calculate // x^y modulo (10^9 + 7) int power( long long x, unsigned int y) { // Stores the result of x^y int res = 1; // Update x if it exceeds mod x = x % mod; // If x is divisible by mod if (x == 0) return 0; while (y > 0) { // If y is odd, then // multiply x with result if (y & 1) res = (res * x) % mod; // Divide y by 2 y = y >> 1; // Update the value of x x = (x * x) % mod; } // Return the final // value of x ^ y return res; } // Function to count the number of // asymmetric relations in a set // consisting of N elements int asymmetricRelation( int N) { // Return the resultant count return power(3, (N * N - N) / 2); } // Driver Code int main() { int N = 2; cout << asymmetricRelation(N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ final static int mod = 1000000007 ; // Function to calculate // x^y modulo (10^9 + 7) public static int power( int x, int y) { // Stores the result of x^y int res = 1 ; // Update x if it exceeds mod x = x % mod; // If x is divisible by mod if (x == 0 ) return 0 ; while (y > 0 ) { // If y is odd, then // multiply x with result if (y % 2 == 1 ) res = (res * x) % mod; // Divide y by 2 y = y >> 1 ; // Update the value of x x = (x * x) % mod; } // Return the final // value of x ^ y return res; } // Function to count the number of // asymmetric relations in a set // consisting of N elements public static int asymmetricRelation( int N) { // Return the resultant count return power( 3 , (N * N - N) / 2 ); } // Driver code public static void main (String[] args) { int N = 2 ; System.out.print(asymmetricRelation(N)); } } // This code is contributed by user_qa7r |
Python3
# Python3 program for the above approach mod = 1000000007 # Function to calculate # x^y modulo (10^9 + 7) def power(x, y): # Stores the result of x^y res = 1 # Update x if it exceeds mod x = x % mod # If x is divisible by mod if (x = = 0 ): return 0 while (y > 0 ): # If y is odd, then # multiply x with result if (y & 1 ): res = (res * x) % mod; # Divide y by 2 y = y >> 1 # Update the value of x x = (x * x) % mod # Return the final # value of x ^ y return res # Function to count the number of # asymmetric relations in a set # consisting of N elements def asymmetricRelation(N): # Return the resultant count return power( 3 , (N * N - N) / / 2 ) # Driver Code if __name__ = = '__main__' : N = 2 print (asymmetricRelation(N)) # This code is contributed by SURENDRA_GANGWAR |
C#
// C# program for the above approach using System; class GFG{ const int mod = 1000000007; // Function to calculate // x^y modulo (10^9 + 7) static int power( int x, int y) { // Stores the result of x^y int res = 1; // Update x if it exceeds mod x = x % mod; // If x is divisible by mod if (x == 0) return 0; while (y > 0) { // If y is odd, then // multiply x with result if ((y & 1) != 0) res = (res * x) % mod; // Divide y by 2 y = y >> 1; // Update the value of x x = (x * x) % mod; } // Return the final // value of x ^ y return res; } // Function to count the number of // asymmetric relations in a set // consisting of N elements static int asymmetricRelation( int N) { // Return the resultant count return power(3, (N * N - N) / 2); } // Driver Code public static void Main( string [] args) { int N = 2; Console.WriteLine(asymmetricRelation(N)); } } // This code is contributed by ukasp |
Javascript
<script> // Javascript program for the above approach var mod = 1000000007; // Function to calculate // x^y modulo (10^9 + 7) function power(x, y) { // Stores the result of x^y var res = 1; // Update x if it exceeds mod x = x % mod; // If x is divisible by mod if (x == 0) return 0; while (y > 0) { // If y is odd, then // multiply x with result if (y & 1) res = (res * x) % mod; // Divide y by 2 y = y >> 1; // Update the value of x x = (x * x) % mod; } // Return the final // value of x ^ y return res; } // Function to count the number of // asymmetric relations in a set // consisting of N elements function asymmetricRelation( N) { // Return the resultant count return power(3, (N * N - N) / 2); } // Driver Code var N = 2; document.write( asymmetricRelation(N)); </script> |
3
Time Complexity: O(N*log N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!