Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AILongest subsequence such that difference between adjacent elements is K

Longest subsequence such that difference between adjacent elements is K

Given an array arr[] of size N and an integer K, the task is to find the longest subsequence such that the difference between adjacents is K

Example:

Input: arr[]={1, 2, 3, 4, 5, 3, 2}, K=1
Output: 6
Explanation: The longest subsequence with the difference between the adjacent elements as 1 is: {1, 2, 3, 4, 3, 2}

Input: arr[]={1, 2, 3, 2, 3, 7, 2, 1}, K=2
Output: 3

 

Approach: The given problem can be solved using Dynamic Programming. The idea is to store the length of the longest subsequence having a difference K between adjacents ending after including the current element. Create an unordered map mp where mp[i] represents the maximum length of subsequence which includes integer i.
So, the relation to get the maximum length subsequence can be written as:

mp[i] = 1 + max(mp[i – K], mp[i + K])

The maximum integer stores in the map mp is the required answer. Below is the implementation of the above approach:

C++




// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the longest
// subsequence such that difference
// between adjacent elements is K
int longestSubsequence(vector<int>& arr, int K)
{
    // Stores length of longest
    // subsequence in a map
    unordered_map<int, int> mp;
 
    // Variable to store the maximum
    // length of subsequence
    int mx = 1;
 
    // Loop to iterate through the
    // given array
    for (auto x : arr) {
        mp[x] = 1;
 
        // If (x - K) exists
        if (mp.count(x - K)) {
            mp[x] = 1 + mp[x - K];
        }
 
        // if (x + K) exists
        if (mp.count(x + K)) {
            mp[x] = max(mp[x], 1 + mp[x + K]);
        }
 
        mx = max(mx, mp[x]);
    }
 
    // Return Answer
    return mx;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 1, 2, 3, 4, 5, 3, 2 };
    int K = 1;
 
    cout << longestSubsequence(arr, K);
}


Java




// Java code for the above approach
import java.util.HashMap;
 
class GFG {
 
    // Function to find the longest
    // subsequence such that difference
    // between adjacent elements is K
    public static int longestSubsequence(int[] arr, int K) {
 
        // Stores length of longest
        // subsequence in a map
        HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>();
 
        // Variable to store the maximum
        // length of subsequence
        int mx = 1;
 
        // Loop to iterate through the
        // given array
        for (int x : arr) {
            mp.put(x, 1);
 
            // If (x - K) exists
            if (mp.containsKey(x - K)) {
                mp.put(x, 1 + mp.get(x - K));
            }
 
            // If (x + K) exists
            if (mp.containsKey(x + K)) {
                mp.put(x, Math.max(mp.get(x), 1 + mp.get(x + K)));
            }
            mx = Math.max(mx, mp.get(x));
        }
 
        // Return Answer
        return mx;
    }
 
    // Driver Code
    public static void main(String args[]) {
        int[] arr = { 1, 2, 3, 4, 5, 3, 2 };
        int K = 1;
 
        System.out.print(longestSubsequence(arr, K));
    }
}
 
// This code is contributed by gfgking


Python3




# python code for the above approach
 
# Function to find the longest
# subsequence such that difference
# between adjacent elements is K
def longestSubsequence(arr, K):
 
    # Stores length of longest
    # subsequence in a map
    mp = {}
 
    # Variable to store the maximum
    # length of subsequence
    mx = 1
 
    # Loop to iterate through the
    # given array
    for x in arr:
        mp[x] = 1
 
        # If (x - K) exists
        if ((x - K) in mp):
            mp[x] = 1 + mp[x - K]
 
        # if (x + K) exists
        if ((x+K) in mp):
            mp[x] = max(mp[x], 1 + mp[x + K])
 
        mx = max(mx, mp[x])
 
    # Return Answer
    return mx
 
# Driver Code
if __name__ == "__main__":
 
    arr = [1, 2, 3, 4, 5, 3, 2]
    K = 1
 
    print(longestSubsequence(arr, K))
 
# This code is contributed by rakeshsahni


C#




// C# code for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to find the longest
// subsequence such that difference
// between adjacent elements is K
static int longestSubsequence(List<int> arr, int K)
{
     
    // Stores length of longest
    // subsequence in a map
    Dictionary<int,
               int> mp = new Dictionary<int,
                                        int>();
 
    // Variable to store the maximum
    // length of subsequence
    int mx = 1;
 
    // Loop to iterate through the
    // given array
    foreach(int x in arr)
    {
        mp[x] = 1;
 
        // If (x - K) exists
        if (mp.ContainsKey(x - K))
        {
            mp[x] = 1 + mp[x - K];
        }
 
        // If (x + K) exists
        if (mp.ContainsKey(x + K))
        {
            mp[x] = Math.Max(mp[x], 1 + mp[x + K]);
        }
        mx = Math.Max(mx, mp[x]);
    }
 
    // Return Answer
    return mx;
}
 
// Driver Code
public static void Main()
{
    List<int> arr = new List<int>(){ 1, 2, 3, 4, 5, 3, 2 };
    int K = 1;
 
    Console.Write(longestSubsequence(arr, K));
}
}
 
// This code is contributed by ukasp


Javascript




  <script>
      // JavaScript code for the above approach
 
      // Function to find the longest
      // subsequence such that difference
      // between adjacent elements is K
      function longestSubsequence(arr, K)
      {
       
          // Stores length of longest
          // subsequence in a map
          let mp = new Map();
 
          // Variable to store the maximum
          // length of subsequence
          let mx = 1;
 
          // Loop to iterate through the
          // given array
          for (let x of arr) {
              mp.set(x, 1)
 
              // If (x - K) exists
              if (mp.has(x - K)) {
                  mp.set(x, 1 + mp.get(x - K));
              }
 
              // if (x + K) exists
              if (mp.has(x + K)) {
                  mp.set(x, 1 + mp.get(x + K));
              }
 
              mx = Math.max(mx, mp.get(x));
          }
 
          // Return Answer
          return mx;
      }
 
      // Driver Code
      let arr = [1, 2, 3, 4, 5, 3, 2];
      let K = 1;
 
      document.write(longestSubsequence(arr, K));
 
// This code is contributed by Potta Lokesh
  </script>


Output

6

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments