Friday, January 10, 2025
Google search engine
HomeData Modelling & AINumber of pairs of arrays (A, B) such that A is ascending,...

Number of pairs of arrays (A, B) such that A is ascending, B is descending and A[i] ≤ B[i]

Given two integers N and M, the task is to find the number of pairs of arrays (A, B) such that array A and B both are of size M each where each entry of A and B is an integer between 1 and N such that for each i between 1 and M, A[i] ? B[i]. It is also given that the array A is sorted in non-descending order and B is sorted in non-ascending order. Since the answer can be very large, return answer modulo 109 + 7.

Examples: 

Input: N = 2, M = 2 
Output:
1: A= [1, 1] B=[1, 1] 
2: A= [1, 1] B=[1, 2] 
3: A= [1, 1] B=[2, 2] 
4: A= [1, 2] B=[2, 2] 
5: A= [2, 2] B=[2, 2]

Input: N = 5, M = 3 
Output: 210 
 

Approach: Notice that if there is a valid pair of arrays A and B and if B is concatenated after A the resultant array will always be either an ascending or a non-descending array of size of 2 * M. Each element of (A + B) will be between 1 and N (It is not necessary that all elements between 1 and N have to be used). This now simply converts the given problem to finding all the possible combinations of size 2 * M where each element is between 1 to N (with repetitions allowed) whose formula is 2 * M + N – 1CN – 1 or (2 * M + N – 1)! / ((2 * M)! * (N – 1)!).

Below is the implementation of the above approach:  

C++




// C++ code of above approach
#include <bits/stdc++.h>
#define mod 1000000007
using namespace std;
 
long long fact(long long n)
{
    if(n == 1)
        return 1;
    else
        return (fact(n - 1) * n) % mod;
}
 
// Function to return the count of pairs
long long countPairs(int m, int n)
{
    long long ans = fact(2 * m + n - 1) /
                    (fact(n - 1) * fact(2 * m));
    return (ans % mod);
}
 
// Driver code
int main()
{
    int n = 5, m = 3;
    cout << (countPairs(m, n));
    return 0;
}
 
// This code is contributed by mohit kumar 29


Java




// Java code of above approach
class GFG
{
    final static long mod = 1000000007 ;
 
    static long fact(long n)
    {
        if(n == 1)
            return 1;
        else
            return (fact(n - 1) * n) % mod;
    }
     
    // Function to return the count of pairs
    static long countPairs(int m, int n)
    {
        long ans = fact(2 * m + n - 1) /
                   (fact(n - 1) * fact(2 * m));
         
        return (ans % mod);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 5, m = 3;
         
        System.out.println(countPairs(m, n));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
from math import factorial as fact
 
# Function to return the count of pairs
def countPairs(m, n):
    ans = fact(2 * m + n-1)//(fact(n-1)*fact(2 * m))
    return (ans %(10**9 + 7))
 
# Driver code
n, m = 5, 3
print(countPairs(m, n))


C#




// C# code of above approach
using System;
 
class GFG
{
    static long mod = 1000000007 ;
 
    static long fact(long n)
    {
        if(n == 1)
            return 1;
        else
            return (fact(n - 1) * n) % mod;
    }
     
    // Function to return the count of pairs
    static long countPairs(int m, int n)
    {
        long ans = fact(2 * m + n - 1) /
                (fact(n - 1) * fact(2 * m));
         
        return (ans % mod);
    }
     
    // Driver code
    public static void Main()
    {
        int n = 5, m = 3;
         
        Console.WriteLine(countPairs(m, n));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// Javascript code of above approach
var mod = 1000000007
 
function fact(n)
{
    if (n == 1)
        return 1;
    else
        return(fact(n - 1) * n) % mod;
}
 
// Function to return the count of pairs
function countPairs(m, n)
{
    var ans = fact(2 * m + n - 1) /
            (fact(n - 1) * fact(2 * m));
    return (ans % mod);
}
 
// Driver code
var n = 5, m = 3;
 
document.write(countPairs(m, n));
 
// This code is contributed by famously
 
</script>


Output: 

210

 

Time Complexity: O(n + m)
Auxiliary Space: O(max(n, m)). 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments