Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AICheck if a number is Triperfect Number

Check if a number is Triperfect Number

Given a number N   . The tasks is to check if the given number is a Triperfect Number.
Triperfect Number: A Number is a Triperfect Number if it is equal to three times the sum of its divisors, that is, 3 times sum of its positive divisors.
Examples: 
 

Input: N = 15
Output: false
Divisors of 15 are 1, 3, 5 and 15. Sum of 
divisors is 24 which is not equal to 3*15 i.e. 45.

Input: N = 120
Output: true
Sum of divisors is 360 i.e. 3*120.
Hence 120 is a triperfect number.

A Simple Solution is to go through every number from 1 to N and check if it is a divisor. Maintain sum of all divisors. If sum becomes equal to 3*N, then return true, else return false.
An Efficient Solution is to go through numbers till square root of N. If a number ‘i’ divides n, then add both ‘i’ and n/i to sum.
Below is the implementation of the efficient approach: 
 

C++




// CPP code to check if a given
// number is Triperfect or not
#include<bits/stdc++.h>
using namespace std;
 
// Returns true if n is Triperfect
bool isTriPerfect(int n )
{
    // To store sum of divisors.
    // Adding 1 and n since they are divisors of n.
    int sum = 1 + n;
     
    // Find all divisors and add them
    int i = 2;
    while (i * i <= n)
    {
    if (n % i == 0)
        {
            if (n / i == i)
                sum = sum + i;
            else
                sum = sum + i + n / i;
        }
        i += 1;
    }
     
    // If sum of divisors is equal to
    // 3 * n, then n is a Triperfect number
    if (sum == 3 * n and n != 1)
       return true;
    else
       false;
}
 
// Driver program
int main()
{
 int n = 120;
 
 if (isTriPerfect(n))
    cout<<n<<" is a Triperfect number";   
}
 
//This code is contributed by
// Surendra_Gangwar


Java




// Java code to check if a given
// number is Triperfect or not
 
public class GFG{
     
    // Returns true if n is Triperfect
    static boolean isTriPerfect(int n )
    {
        // To store sum of divisors.
        // Adding 1 and n since they are divisors of n.
        int sum = 1 + n;
         
        // Find all divisors and add them
        int i = 2;
        while (i * i <= n)
        {
        if (n % i == 0)
            {
                if (n / i == i)
                    sum = sum + i;
                else
                    sum = sum + i + n / i;
            }
            i += 1;
        }
         
        // If sum of divisors is equal to
        // 3 * n, then n is a Triperfect number
        if (sum == 3 * n & n != 1)
            return true;
        else
            return  false;
    }
     
    // Driver program
    public static void main(String []args)
    {
    int n = 120;
     
    if (isTriPerfect(n))
        System.out.println(n + " is a Triperfect number");    
    }
     
    //This code is contributed by
    // Ryuga
}


Python3




# Python3 code to check if a given
# number is Triperfect or not
 
# Returns true if n is Triperfect
def isTriPerfect( n ):
     
    # To store sum of divisors.
    # Adding 1 and n since they are divisors of n.
    sum = 1 + n
     
    # Find all divisors and add them
    i = 2
    while i * i <= n:
        if n % i == 0:
            if n / i == i:
                sum = sum + i
            else:
                sum = sum + i + n / i
        i += 1
     
    # If sum of divisors is equal to
    # 3 * n, then n is a Triperfect number
    return (True if sum == 3 * n and n != 1 else False)
 
# Driver program
n = 120
 
if isTriPerfect (n):
    print(n, "is a Triperfect number")
           


C#




// C# code to check if a given
// number is Triperfect or not
using System;
public class GFG{
     
    // Returns true if n is Triperfect
    static bool isTriPerfect(int n )
    {
        // To store sum of divisors.
        // Adding 1 and n since they are divisors of n.
        int sum = 1 + n;
         
        // Find all divisors and add them
        int i = 2;
        while (i * i <= n)
        {
        if (n % i == 0)
            {
                if (n / i == i)
                    sum = sum + i;
                else
                    sum = sum + i + n / i;
            }
            i += 1;
        }
         
        // If sum of divisors is equal to
        // 3 * n, then n is a Triperfect number
        if (sum == 3 * n & n != 1)
            return true;
        else
            return false;
    }
     
    // Driver program
    public static void Main()
    {
    int n = 120;
     
    if (isTriPerfect(n))
        Console.WriteLine(n + " is a Triperfect number");    
    }
     
    //This code is contributed by
    // Mukul Singh
}


PHP




<?PHP
// PHP code to check if a given
// number is Triperfect or not
 
// Returns true if n is Triperfect
function isTriPerfect($n )
{
    // To store sum of divisors.
    // Adding 1 and n since they
    // are divisors of n.
    $sum = 1 + $n;
     
    // Find all divisors and add them
    $i = 2;
    while ($i * $i <= $n)
    {
        if ($n % $i == 0)
        {
            if ($n / $i == $i)
                $sum = $sum + $i;
            else
                $sum = $sum + $i + $n / $i;
        }
        $i += 1;
    }
     
    // If sum of divisors is equal to
    // 3 * n, then n is a Triperfect number
    if ($sum == 3 * $n and $n != 1)
        return true;
    else
        false;
}
 
// Driver Code
$n = 120;
 
if (isTriPerfect($n))
    echo $n . " is a Triperfect number";
else
    echo $n . " is not a Triperfect number";
 
// This code is contributed by mits
?>


Javascript




<script>
    // Javascript code to check if a given
    // number is Triperfect or not
     
    // Returns true if n is Triperfect
    function isTriPerfect(n)
    {
        // To store sum of divisors.
        // Adding 1 and n since they are divisors of n.
        let sum = 1 + n;
           
        // Find all divisors and add them
        let i = 2;
        while (i * i <= n)
        {
            if (n % i == 0)
            {
                if (parseInt(n / i, 10) == i)
                    sum = sum + i;
                else
                    sum = sum + i + parseInt(n / i, 10);
            }
            i += 1;
        }
           
        // If sum of divisors is equal to
        // 3 * n, then n is a Triperfect number
        if (sum == 3 * n & n != 1)
            return true;
        else
            return  false;
    }
     
    let n = 120;
       
    if (isTriPerfect(n))
        document.write(n + " is a Triperfect number");   
     
    // This code is contributed by suresh07.
</script>


Output: 

120 is a Triperfect number

 

Time Complexity: O(log n)

Auxiliary Space: O(1)

Some interesting facts about TriPerfect Numbers
 

  • Till now only 6 Triperfect numbers are known. These are 120, 672, 523776, 459818240, 1476304896 and 51001180160.
  • It has not been proven that more Triperfect Numbers don’t exist but it is believed that these are the only six.

Similarly, we can check for quad-perfect numbers(sum of factors = 4*n), five-perfect numbers( sum of factors = 5*n) and so on. There are currently 36 quad-perfect numbers known and 65 five-perfect numbers known.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments