Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIMinimum number of points required to cover all blocks of a 2-D...

Minimum number of points required to cover all blocks of a 2-D grid

Given two integers N and M. The task is to find the minimum number of points required to cover an N * M grid. 
 

A point can cover two blocks in a 2-D grid when placed in any common line or sideline.

Examples: 
 

Input: N = 5, M = 7 
Output: 18
Input: N = 3, M = 8 
Output: 12 
 

 

Approach: This problem can be solved using Greedy Approach. The main idea is to observe that a single point placed on the common line or sideline covers two blocks. So the total number of points needed to cover all the blocks(say B blocks) is B/2 when B is even else B/2 + 1 when B is odd.
For a grid having N*M blocks, The total number of blocks will be (N*M)/2 when either one of them is even. Otherwise, it will require ((N*M)/2) + 1 points to cover all the blocks and one extra for last untouched block.
Below is the image to show how points can be used to cover block in a 2D-grid: 
 

Point ‘A’ covers two blocks and ‘B’ covers one block.
Below is the implementation of the above approach:
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number
// of Points required to cover a grid
int minPoints(int n, int m)
{
    int ans = 0;
 
    // If number of block is even
    if ((n % 2 != 0)
        && (m % 2 != 0)) {
        ans = ((n * m) / 2) + 1;
    }
    else {
        ans = (n * m) / 2;
    }
 
    // Return the minimum points
    return ans;
}
 
// Driver Code
int main()
{
    // Given size of grid
    int N = 5, M = 7;
 
    // Function Call
    cout << minPoints(N, M);
    return 0;
}


Java




// Java program for the above approach
class GFG{
     
// Function to find the minimum number
// of Points required to cover a grid
static int minPoints(int n, int m)
{
    int ans = 0;
 
    // If number of block is even
    if ((n % 2 != 0) && (m % 2 != 0))
    {
        ans = ((n * m) / 2) + 1;
    }
    else
    {
        ans = (n * m) / 2;
    }
 
    // Return the minimum points
    return ans;
}
 
// Driver Code
public static void main (String[] args)
{
    // Given size of grid
    int N = 5, M = 7;
 
    // Function Call
    System.out.print(minPoints(N, M));
}
}
 
// This code is contributed by Ritik Bansal


Python3




# Python3 program for the above approach
 
# Function to find the minimum number
# of Points required to cover a grid
def minPoints(n, m):
 
    ans = 0
 
    # If number of block is even
    if ((n % 2 != 0) and (m % 2 != 0)):
        ans = ((n * m) // 2) + 1
 
    else:
        ans = (n * m) // 2
 
    # Return the minimum points
    return ans
 
# Driver code
if __name__ == '__main__':
 
    # Given size of grid
    N = 5
    M = 7
 
    # Function call
    print(minPoints(N, M))
 
# This code is contributed by himanshu77


C#




// C# program for the above approach
using System;
class GFG{
     
// Function to find the minimum number
// of Points required to cover a grid
static int minPoints(int n, int m)
{
    int ans = 0;
 
    // If number of block is even
    if ((n % 2 != 0) && (m % 2 != 0))
    {
        ans = ((n * m) / 2) + 1;
    }
    else
    {
        ans = (n * m) / 2;
    }
 
    // Return the minimum points
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    // Given size of grid
    int N = 5, M = 7;
 
    // Function Call
    Console.Write(minPoints(N, M));
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
// Javascript implementation for the above approach
 
// Function to find the minimum number
// of Points required to cover a grid
function minPolets(n, m)
{
    let ans = 0;
 
    // If number of block is even
    if ((n % 2 != 0) && (m % 2 != 0))
    {
        ans = Math.floor((n * m) / 2) + 1;
    }
    else
    {
        ans = Math.floor((n * m) / 2);
    }
 
    // Return the minimum points
    return ans;
}
 
    // Driver Code
     
    // Given size of grid
    let N = 5, M = 7;
 
    // Function Call
    document.write(minPolets(N, M));
 
</script>


Output: 

18

 

Time Complexity: O(1) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments