Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIFind distinct integers for a triplet with given product

Find distinct integers for a triplet with given product

Given an integer X, the task is to find the three distinct integers greater than 1 i.e. A, B and C such that (A * B * C) = X. If no such triplet exists then print -1.
Examples: 

Input: X = 64 
Output: 2 4 8 
(2 * 4 * 8) = 64
Input: X = 32 
Output: -1 
No such triplet exists. 

Approach: Suppose we have a triplet (A, B, C). Notice that, for their product to be equal to X, each of the integer has to be a factor of X. So, store all the factors of X in O(sqrt(X)) time using the approach discussed in this article. 
There will be at most sqrt(X) factors now. Next, iterate on each factor by running two loops, one picking A and another picking B. Now if this triplet is valid i.e. C = X / (A * B) where C is also a factor of X. To check that, store all the factors in an unordered_set. If a valid triplet is found then print the triplet else print -1.
Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the required triplets
void findTriplets(int x)
{
    // To store the factors
    vector<int> fact;
    unordered_set<int> factors;
 
    // Find factors in sqrt(x) time
    for (int i = 2; i <= sqrt(x); i++) {
        if (x % i == 0) {
            fact.push_back(i);
            if (x / i != i)
                fact.push_back(x / i);
            factors.insert(i);
            factors.insert(x / i);
        }
    }
 
    bool found = false;
    int k = fact.size();
    for (int i = 0; i < k; i++) {
 
        // Choose a factor
        int a = fact[i];
        for (int j = 0; j < k; j++) {
 
            // Choose another factor
            int b = fact[j];
 
            // These conditions need to be
            // met for a valid triplet
            if ((a != b) && (x % (a * b) == 0)
                && (x / (a * b) != a)
                && (x / (a * b) != b)
                && (x / (a * b) != 1)) {
 
                // Print the valid triplet
                cout << a << " " << b << " "
                     << (x / (a * b));
                found = true;
                break;
            }
        }
 
        // Triplet found
        if (found)
            break;
    }
 
    // Triplet not found
    if (!found)
        cout << "-1";
}
 
// Driver code
int main()
{
    int x = 105;
 
    findTriplets(x);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to find the required triplets
static void findTriplets(int x)
{
    // To store the factors
    Vector<Integer> fact = new Vector<Integer>();
    HashSet<Integer> factors = new HashSet<Integer>();
 
    // Find factors in Math.sqrt(x) time
    for (int i = 2; i <= Math.sqrt(x); i++)
    {
        if (x % i == 0)
        {
            fact.add(i);
            if (x / i != i)
                fact.add(x / i);
            factors.add(i);
            factors.add(x / i);
        }
    }
 
    boolean found = false;
    int k = fact.size();
    for (int i = 0; i < k; i++)
    {
 
        // Choose a factor
        int a = fact.get(i);
        for (int j = 0; j < k; j++)
        {
 
            // Choose another factor
            int b = fact.get(j);
 
            // These conditions need to be
            // met for a valid triplet
            if ((a != b) && (x % (a * b) == 0)
                && (x / (a * b) != a)
                && (x / (a * b) != b)
                && (x / (a * b) != 1))
            {
 
                // Print the valid triplet
                System.out.print(a+ " " + b + " "
                    + (x / (a * b)));
                found = true;
                break;
            }
        }
 
        // Triplet found
        if (found)
            break;
    }
 
    // Triplet not found
    if (!found)
        System.out.print("-1");
}
 
// Driver code
public static void main(String[] args)
{
    int x = 105;
 
    findTriplets(x);
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
from math import sqrt
 
# Function to find the required triplets
def findTriplets(x) :
 
    # To store the factors
    fact = [];
    factors = set();
 
    # Find factors in sqrt(x) time
    for i in range(2, int(sqrt(x))) :
        if (x % i == 0) :
            fact.append(i);
             
            if (x / i != i) :
                fact.append(x // i);
                 
            factors.add(i);
            factors.add(x // i);
 
    found = False;
    k = len(fact);
     
    for i in range(k) :
 
        # Choose a factor
        a = fact[i];
         
        for j in range(k) :
 
            # Choose another factor
            b = fact[j];
 
            # These conditions need to be
            # met for a valid triplet
            if ((a != b) and (x % (a * b) == 0)
                and (x / (a * b) != a)
                and (x / (a * b) != b)
                and (x / (a * b) != 1)) :
 
                # Print the valid triplet
                print(a,b,x // (a * b));
                found = True;
                break;
     
        # Triplet found
        if (found) :
            break;
 
    # Triplet not found
    if (not found) :
        print("-1");
 
# Driver code
if __name__ == "__main__" :
 
    x = 105;
 
    findTriplets(x);
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to find the required triplets
static void findTriplets(int x)
{
    // To store the factors
    List<int> fact = new List<int>();
    HashSet<int> factors = new HashSet<int>();
 
    // Find factors in Math.Sqrt(x) time
    for (int i = 2; i <= Math.Sqrt(x); i++)
    {
        if (x % i == 0)
        {
            fact.Add(i);
            if (x / i != i)
                fact.Add(x / i);
            factors.Add(i);
            factors.Add(x / i);
        }
    }
 
    bool found = false;
    int k = fact.Count;
    for (int i = 0; i < k; i++)
    {
 
        // Choose a factor
        int a = fact[i];
        for (int j = 0; j < k; j++)
        {
 
            // Choose another factor
            int b = fact[j];
 
            // These conditions need to be
            // met for a valid triplet
            if ((a != b) && (x % (a * b) == 0)
                && (x / (a * b) != a)
                && (x / (a * b) != b)
                && (x / (a * b) != 1))
            {
 
                // Print the valid triplet
                Console.Write(a+ " " + b + " "
                    + (x / (a * b)));
                found = true;
                break;
            }
        }
 
        // Triplet found
        if (found)
            break;
    }
 
    // Triplet not found
    if (!found)
        Console.Write("-1");
}
 
// Driver code
public static void Main(String[] args)
{
    int x = 105;
 
    findTriplets(x);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find the required triplets
function findTriplets(x)
{
    // To store the factors
    let fact = [];
    let factors = new Set();
  
    // Find factors in Math.sqrt(x) time
    for (let i = 2; i <= Math.sqrt(x); i++)
    {
        if (x % i == 0)
        {
            fact.push(i);
            if (x / i != i)
                fact.push(x / i);
            factors.add(i);
            factors.add(x / i);
        }
    }
  
    let found = false;
    let k = fact.length;
    for (let i = 0; i < k; i++)
    {
  
        // Choose a factor
        let a = fact[i];
        for (let j = 0; j < k; j++)
        {
  
            // Choose another factor
            let b = fact[j];
  
            // These conditions need to be
            // met for a valid triplet
            if ((a != b) && (x % (a * b) == 0)
                && (x / (a * b) != a)
                && (x / (a * b) != b)
                && (x / (a * b) != 1))
            {
  
                // Print the valid triplet
                document.write(a+ " " + b + " "
                    + (x / (a * b)));
                found = true;
                break;
            }
        }
  
        // Triplet found
        if (found)
            break;
    }
  
    // Triplet not found
    if (!found)
        document.write("-1");
}
  
// Driver code
     
      let x = 105;
  
    findTriplets(x);
                                                                                             
</script>


Output: 

3 5 7

 

Time Complexity: O(N), N=X

Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments