Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIPrint numbers such that no two consecutive numbers are co-prime and every...

Print numbers such that no two consecutive numbers are co-prime and every three consecutive numbers are co-prime

Given an integer N, the task is to print N integers ? 109 such that no two consecutive of these integers are co-prime and every 3 consecutive are co-prime.

Examples:

Input: N = 3 
Output: 6 15 10
Input: N = 4 
Output: 6 15 35 14

Approach: 

  • We can just multiply consecutive primes and for the last number just multiply the gcd(last, last-1) * 2. We do this so that the (n – 1)th number, nth and 1st numbers can also follow the property mentioned in the problem statement.
  • Another important part of the problem is the fact that the numbers should be ? 109. If you just multiply consecutive prime numbers, after around 3700 numbers, the value will cross 109. So we need to only use those prime numbers whose product won’t cross 109.
  • To do this efficiently, consider a small number of primes, say the first 550 primes, and select them in a way such that on making a product no number gets repeated. We first choose every prime consecutively and then choose the primes with an interval of 2 and then 3 and so on. By doing that, we already make sure that no number gets repeated.

So we will select 
5, 11, 17, … 
Next time, we can start with 7 and select, 
7, 13, 19, …

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define limit 1000000000
#define MAX_PRIME 2000000
#define MAX 1000000
#define I_MAX 50000
 
map<int, int> mp;
 
int b[MAX];
int p[MAX];
int j = 0;
bool prime[MAX_PRIME + 1];
 
// Function to generate Sieve of
// Eratosthenes
void SieveOfEratosthenes(int n)
{
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
 
    // Add the prime numbers to the array b
    for (int p = 2; p <= n; p++) {
        if (prime[p]) {
            b[j++] = p;
        }
    }
}
 
// Function to return the gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function to print the required
// sequence of integers
void printSeries(int n)
{
    SieveOfEratosthenes(MAX_PRIME);
 
    int i, g, k, l, m, d;
    int ar[I_MAX + 2];
 
    for (i = 0; i < j; i++) {
        if ((b[i] * b[i + 1]) > limit)
            break;
 
        // Including the primes in a series
        // of primes which will be later
        // multiplied
        p[i] = b[i];
 
        // This is done to mark a product
        // as existing
        mp[b[i] * b[i + 1]] = 1;
    }
 
    // Maximum number of primes that we consider
    d = 550;
    bool flag = false;
 
    // For different interval
    for (k = 2; (k < d - 1) && !flag; k++) {
 
        // For different starting index of jump
        for (m = 2; (m < d) && !flag; m++) {
 
            // For storing the numbers
            for (l = m + k; l < d; l += k) {
 
                // Checking for occurrence of a
                // product. Also checking for the
                // same prime occurring consecutively
                if (((b[l] * b[l + k]) < limit)
                    && (l + k) < d && p[i - 1] != b[l + k]
                    && p[i - 1] != b[l]
                    && mp[b[l] * b[l + k]] != 1) {
                    if (mp[p[i - 1] * b[l]] != 1) {
 
                        // Including the primes in a
                        // series of primes which will
                        // be later multiplied
                        p[i] = b[l];
                        mp[p[i - 1] * b[l]] = 1;
                        i++;
                    }
                }
 
                if (i >= I_MAX) {
                    flag = true;
                    break;
                }
            }
        }
    }
 
    for (i = 0; i < n; i++)
        ar[i] = p[i] * p[i + 1];
 
    for (i = 0; i < n - 1; i++)
        cout << ar[i] << " ";
 
    g = gcd(ar[n - 1], ar[n - 2]);
    cout << g * 2 << endl;
}
 
// Driver Code
int main()
{
    int n = 4;
 
    printSeries(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
static int limit = 1000000000;
static int MAX_PRIME = 2000000;
static int MAX = 1000000;
static int I_MAX = 50000;
 
static HashMap<Integer,
               Integer> mp = new HashMap<Integer,
                                         Integer>();
 
static int []b = new int[MAX];
static int []p = new int[MAX];
static int j = 0;
static boolean []prime = new boolean[MAX_PRIME + 1];
 
// Function to generate Sieve of
// Eratosthenes
static void SieveOfEratosthenes(int n)
{
    for(int i = 0; i < MAX_PRIME + 1; i++)
        prime[i] = true;
 
    for (int p = 2; p * p <= n; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
 
    // Add the prime numbers to the array b
    for (int p = 2; p <= n; p++)
    {
        if (prime[p])
        {
            b[j++] = p;
        }
    }
}
 
// Function to return the gcd of a and b
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function to print the required
// sequence of integers
static void printSeries(int n)
{
    SieveOfEratosthenes(MAX_PRIME);
 
    int i, g, k, l, m, d;
    int []ar = new int[I_MAX + 2];
 
    for (i = 0; i < j; i++)
    {
        if ((b[i] * b[i + 1]) > limit)
            break;
 
        // Including the primes in a series
        // of primes which will be later
        // multiplied
        p[i] = b[i];
 
        // This is done to mark a product
        // as existing
        mp.put(b[i] * b[i + 1], 1);
    }
 
    // Maximum number of primes that we consider
    d = 550;
    boolean flag = false;
 
    // For different interval
    for (k = 2; (k < d - 1) && !flag; k++)
    {
 
        // For different starting index of jump
        for (m = 2; (m < d) && !flag; m++)
        {
 
            // For storing the numbers
            for (l = m + k; l < d; l += k)
            {
 
                // Checking for occurrence of a
                // product. Also checking for the
                // same prime occurring consecutively
                if (((b[l] * b[l + k]) < limit) &&
                      mp.containsKey(b[l] * b[l + k]) &&
                      mp.containsKey(p[i - 1] * b[l]) &&
                      (l + k) < d && p[i - 1] != b[l + k] &&
                                         p[i - 1] != b[l] &&
                             mp.get(b[l] * b[l + k]) != 1)
                    {
                    if (mp.get(p[i - 1] * b[l]) != 1)
                    {
 
                        // Including the primes in a
                        // series of primes which will
                        // be later multiplied
                        p[i] = b[l];
                        mp.put(p[i - 1] * b[l], 1);
                        i++;
                    }
                }
 
                if (i >= I_MAX)
                {
                    flag = true;
                    break;
                }
            }
        }
    }
 
    for (i = 0; i < n; i++)
        ar[i] = p[i] * p[i + 1];
 
    for (i = 0; i < n - 1; i++)
        System.out.print(ar[i]+" ");
 
    g = gcd(ar[n - 1], ar[n - 2]);
    System.out.print(g * 2);
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 4;
    printSeries(n);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of
# the above approach
limit = 1000000000
MAX_PRIME = 2000000
MAX = 1000000
I_MAX = 50000
 
mp = {}
 
b = [0] * MAX
p = [0] * MAX
j = 0
prime = [True] * (MAX_PRIME + 1)
 
# Function to generate Sieve of
# Eratosthenes
def SieveOfEratosthenes(n):
    global j
    p = 2
    while p * p <= n:
 
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
            for i in range(p * p, n + 1, p):
                prime[i] = False
        p += 1
 
    # Add the prime numbers to the array b
    for p in range(2, n + 1):
        if (prime[p]):
            b[j] = p
            j += 1
 
# Function to return
# the gcd of a and b
def gcd(a, b):
 
    if (b == 0):
        return a
    return gcd(b, a % b)
 
# Function to print the required
# sequence of integers
def printSeries(n):
 
    SieveOfEratosthenes(MAX_PRIME)
 
    ar = [0] * (I_MAX + 2)
 
    for i in range(j):
        if ((b[i] * b[i + 1]) > limit):
            break
 
        # Including the primes in a series
        # of primes which will be later
        # multiplied
        p[i] = b[i]
 
        # This is done to mark a product
        # as existing
        mp[b[i] * b[i + 1]] = 1
 
    # Maximum number of
    # primes that we consider
    d = 550
    flag = False
 
    # For different interval
    k = 2
    while (k < d - 1) and not flag:
 
        # For different starting
        # index of jump
        m = 2
        while (m < d) and not flag:
 
            # For storing the numbers
            for l in range(m + k, d, k):
 
                # Checking for occurrence of a
                # product. Also checking for the
                # same prime occurring consecutively
                if (((b[l] * b[l + k]) < limit) and
                    (l + k) < d and p[i - 1] != b[l + k] and
                     p[i - 1] != b[l] and
                     ((b[l] * b[l + k] in mp) and
                     mp[b[l] * b[l + k]] != 1)):
                   
                    if (mp[p[i - 1] * b[l]] != 1):
 
                        # Including the primes in a
                        # series of primes which will
                        # be later multiplied
                        p[i] = b[l]
                        mp[p[i - 1] * b[l]] = 1
                        i += 1
 
                if (i >= I_MAX):
                    flag = True
                    break
            m += 1
        k += 1
 
    for i in range(n):
        ar[i] = p[i] * p[i + 1]
 
    for i in range(n - 1):
        print(ar[i], end = " ")
 
    g = gcd(ar[n - 1], ar[n - 2])
    print(g * 2)
 
# Driver Code
if __name__ == "__main__":
    n = 4
    printSeries(n)
 
# This code is contributed by Chitranayal


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;            
     
class GFG
{
 
static int limit = 1000000000;
static int MAX_PRIME = 2000000;
static int MAX = 1000000;
static int I_MAX = 50000;
 
static Dictionary<int,
                  int> mp = new Dictionary<int,
                                           int>();
 
static int []b = new int[MAX];
static int []p = new int[MAX];
static int j = 0;
static bool []prime = new bool[MAX_PRIME + 1];
 
// Function to generate Sieve of
// Eratosthenes
static void SieveOfEratosthenes(int n)
{
    for(int i = 0; i < MAX_PRIME + 1; i++)
        prime[i] = true;
 
    for (int p = 2; p * p <= n; p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
            for (int i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
 
    // Add the prime numbers to the array b
    for (int p = 2; p <= n; p++)
    {
        if (prime[p])
        {
            b[j++] = p;
        }
    }
}
 
// Function to return the gcd of a and b
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function to print the required
// sequence of integers
static void printSeries(int n)
{
    SieveOfEratosthenes(MAX_PRIME);
 
    int i, g, k, l, m, d;
    int []ar = new int[I_MAX + 2];
 
    for (i = 0; i < j; i++)
    {
        if ((b[i] * b[i + 1]) > limit)
            break;
 
        // Including the primes in a series
        // of primes which will be later
        // multiplied
        p[i] = b[i];
 
        // This is done to mark a product
        // as existing
        mp.Add(b[i] * b[i + 1], 1);
    }
 
    // Maximum number of primes that we consider
    d = 550;
    bool flag = false;
 
    // For different interval
    for (k = 2; (k < d - 1) && !flag; k++)
    {
 
        // For different starting index of jump
        for (m = 2; (m < d) && !flag; m++)
        {
 
            // For storing the numbers
            for (l = m + k; l < d; l += k)
            {
 
                // Checking for occurrence of a
                // product. Also checking for the
                // same prime occurring consecutively
                if (((b[l] * b[l + k]) < limit) &&
                    mp.ContainsKey(b[l] * b[l + k]) &&
                    mp.ContainsKey(p[i - 1] * b[l]) &&
                    (l + k) < d && p[i - 1] != b[l + k] &&
                                       p[i - 1] != b[l] &&
                            mp[b[l] * b[l + k]] != 1)
                    {
                    if (mp[p[i - 1] * b[l]] != 1)
                    {
 
                        // Including the primes in a
                        // series of primes which will
                        // be later multiplied
                        p[i] = b[l];
                        mp.Add(p[i - 1] * b[l], 1);
                        i++;
                    }
                }
 
                if (i >= I_MAX)
                {
                    flag = true;
                    break;
                }
            }
        }
    }
 
    for (i = 0; i < n; i++)
        ar[i] = p[i] * p[i + 1];
 
    for (i = 0; i < n - 1; i++)
        Console.Write(ar[i] + " ");
 
    g = gcd(ar[n - 1], ar[n - 2]);
    Console.Write(g * 2);
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 4;
    printSeries(n);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript implementation of the approach
 
let limit = 1000000000
let MAX_PRIME = 2000000
let MAX = 1000000
let I_MAX = 50000
 
let mp = new Map();
 
let b = new Array(MAX);
let p = new Array(MAX);
let j = 0;
let prime = new Array(MAX_PRIME + 1);
 
// Function to generate Sieve of
// Eratosthenes
function SieveOfEratosthenes(n)
{
    prime.fill(true);
 
    for (let p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
            for (let i = p * p; i <= n; i += p)
                prime[i] = false;
        }
    }
 
    // Add the prime numbers to the array b
    for (let p = 2; p <= n; p++) {
        if (prime[p]) {
            b[j++] = p;
        }
    }
}
 
// Function to return the gcd of a and b
function gcd(a, b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function to print the required
// sequence of integers
function printSeries(n)
{
    SieveOfEratosthenes(MAX_PRIME);
 
    let i, g, k, l, m, d;
    let ar = new Array(I_MAX + 2);
 
    for (i = 0; i < j; i++) {
        if ((b[i] * b[i + 1]) > limit)
            break;
 
        // Including the primes in a series
        // of primes which will be later
        // multiplied
        p[i] = b[i];
 
        // This is done to mark a product
        // as existing
        mp[b[i] * b[i + 1]] = 1;
    }
 
    // Maximum number of primes that we consider
    d = 550;
    let flag = false;
 
    // For different interval
    for (k = 2; (k < d - 1) && !flag; k++) {
 
        // For different starting index of jump
        for (m = 2; (m < d) && !flag; m++) {
 
            // For storing the numbers
            for (l = m + k; l < d; l += k) {
 
                // Checking for occurrence of a
                // product. Also checking for the
                // same prime occurring consecutively
                if (((b[l] * b[l + k]) < limit)
                    && (l + k) < d && p[i - 1] != b[l + k]
                    && p[i - 1] != b[l] && mp[b[l] * b[l + k]] != 1) {
                    if (mp[p[i - 1] * b[l]] != 1) {
 
                        // Including the primes in a
                        // series of primes which will
                        // be later multiplied
                        p[i] = b[l];
                        mp[p[i - 1] * b[l]] = 1;
                        i++;
                    }
                }
 
                if (i >= I_MAX) {
                    flag = true;
                    break;
                }
            }
        }
    }
 
    for (i = 0; i < n; i++)
        ar[i] = p[i] * p[i + 1];
 
    for (i = 0; i < n - 1; i++)
        document.write(ar[i] + " ");
 
    g = gcd(ar[n - 1], ar[n - 2]);
    document.write( g * 2 + "<br>");
}
 
// Driver Code
 
let n = 4;
 
printSeries(n);
 
// This code is contributed by gfgking
</script>


Output: 

6 15 35 14

 

Time Complexity: O(MAX_PRIME * I_MAX^2).

The time complexity of the above code is O(MAX_PRIME * I_MAX^2). Here MAX_PRIME is the maximum prime number that we have considered, I_MAX is the maximum number of prime numbers that can be produced and MAX is the maximum number that we have considered.

Space Complexity: O(MAX_PRIME + I_MAX).

The space complexity of the above code is O(MAX_PRIME + I_MAX). Here MAX_PRIME is the maximum prime number that we have considered and I_MAX is the maximum number of prime numbers that can be produced.

Another approach: List all the prime numbers up to 6 million by using the Sieve of Eratosthenes. We know the base condition i.e. N = 3 forms {6, 10, 15}. 

So, we use these three values to generate further terms of the sequence. 
Like {2, 3, 5}, these primes can not be used to generate sequences because they are already used in {6, 10, 15}. We also can’t use {7, 11}, which we’ll see later. 

Now we have a prime list {13, 17, 19, 23, 29, ……}. We take the first prime and multiply it with 6, second with 15, third with 10, again 4th with 6, and so on…

13 * 6, 17 * 15, 19 * 10, 23 * 6, 29 * 15, ........upto N - 2 terms.
(N - 1)th term = (N - 1)th prime * 7.
Nth term = 7 * 11.
again, first term = first term * 11 to make 1st and last noncoprime.
For example, N = 5
6 * 11 * 13, 15 * 17, 10 * 19, 11 * 19, 7 * 11

Now we see that we can not use 7 and 11 from the list as these are used to generate the last and second last term.
Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
const int MAX = 620000;
int prime[MAX];
 
// Function for Sieve of Eratosthenes
void Sieve()
{
    for (int i = 2; i < MAX; i++) {
        if (prime[i] == 0) {
            for (int j = 2 * i; j < MAX; j += i) {
                prime[j] = 1;
            }
        }
    }
}
 
// Function to print the required sequence
void printSequence(int n)
{
    Sieve();
    vector<int> v, u;
 
    // Store only the required primes
    for (int i = 13; i < MAX; i++) {
        if (prime[i] == 0) {
            v.push_back(i);
        }
    }
    // Base condition
    if (n == 3) {
        cout << 6 << " " << 10 << " " << 15;
        return;
    }
 
    int k;
    for (k = 0; k < n - 2; k++) {
 
        // First integer in the list
        if (k % 3 == 0) {
            u.push_back(v[k] * 6);
        }
 
        // Second integer in the list
        else if (k % 3 == 1) {
 
            u.push_back(v[k] * 15);
        }
 
        // Third integer in the list
        else {
            u.push_back(v[k] * 10);
        }
    }
    k--;
 
    // Generate (N - 1)th term
    u.push_back(v[k] * 7);
 
    // Generate Nth term
    u.push_back(7 * 11);
 
    // Modify first term
    u[0] = u[0] * 11;
 
    // Print the sequence
    for (int i = 0; i < u.size(); i++) {
        cout << u[i] << " ";
    }
}
 
// Driver code
int main()
{
    int n = 4;
    printSequence(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
    static int MAX = 620000;
    static int[] prime = new int[MAX];
 
    // Function for Sieve of Eratosthenes
    static void Sieve()
    {
        for (int i = 2; i < MAX; i++)
        {
            if (prime[i] == 0)
            {
                for (int j = 2 * i;
                         j < MAX; j += i)
                {
                    prime[j] = 1;
                }
            }
        }
    }
 
    // Function to print the required sequence
    static void printSequence(int n)
    {
        Sieve();
        Vector<Integer> v = new Vector<Integer>();
        Vector<Integer> u = new Vector<Integer>();
 
        // Store only the required primes
        for (int i = 13; i < MAX; i++)
        {
            if (prime[i] == 0)
            {
                v.add(i);
            }
        }
         
        // Base condition
        if (n == 3)
        {
            System.out.print(6 + " " + 10 + " " + 15);
            return;
        }
 
        int k;
        for (k = 0; k < n - 2; k++)
        {
 
            // First integer in the list
            if (k % 3 == 0)
            {
                u.add(v.get(k) * 6);
            }
             
            // Second integer in the list
            else if (k % 3 == 1)
            {
 
                u.add(v.get(k) * 15);
            }
             
            // Third integer in the list
            else
            {
                u.add(v.get(k) * 10);
            }
        }
        k--;
 
        // Generate (N - 1)th term
        u.add(v.get(k) * 7);
 
        // Generate Nth term
        u.add(7 * 11);
 
        // Modify first term
        u.set(0, u.get(0) * 11);
 
        // Print the sequence
        for (int i = 0; i < u.size(); i++)
        {
            System.out.print(u.get(i) + " ");
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 4;
        printSequence(n);
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program for the above approach
MAX = 620000
prime = [0] * MAX
 
# Function for Sieve of Eratosthenes
def Sieve():
 
    for i in range(2, MAX):
        if (prime[i] == 0):
            for j in range(2 * i, MAX, i):
                prime[j] = 1
 
# Function to print the required sequence
def printSequence (n):
 
    Sieve()
    v = []
    u = []
 
    # Store only the required primes
    for i in range(13, MAX):
        if (prime[i] == 0):
            v.append(i)
 
    # Base condition
    if (n == 3):
        print(6, 10, 15)
        return
 
    k = 0
    for k in range(n - 2):
 
        # First integer in the list
        if (k % 3 == 0):
            u.append(v[k] * 6)
 
        # Second integer in the list
        elif (k % 3 == 1):
            u.append(v[k] * 15)
 
        # Third integer in the list
        else:
            u.append(v[k] * 10)
     
    # Generate (N - 1)th term
    u.append(v[k] * 7)
 
    # Generate Nth term
    u.append(7 * 11)
 
    # Modify first term
    u[0] = u[0] * 11
 
    # Print the sequence
    print(*u)
 
# Driver code
if __name__ == '__main__':
 
    n = 4
    printSequence(n)
 
# This code is contributed by himanshu77


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
    static int MAX = 620000;
    static int[] prime = new int[MAX];
 
    // Function for Sieve of Eratosthenes
    static void Sieve()
    {
        for (int i = 2; i < MAX; i++)
        {
            if (prime[i] == 0)
            {
                for (int j = 2 * i;
                        j < MAX; j += i)
                {
                    prime[j] = 1;
                }
            }
        }
    }
 
    // Function to print the required sequence
    static void printSequence(int n)
    {
        Sieve();
        List<int> v = new List<int>();
        List<int> u = new List<int>();
 
        // Store only the required primes
        for (int i = 13; i < MAX; i++)
        {
            if (prime[i] == 0)
            {
                v.Add(i);
            }
        }
         
        // Base condition
        if (n == 3)
        {
            Console.Write(6 + " " + 10 + " " + 15);
            return;
        }
 
        int k;
        for (k = 0; k < n - 2; k++)
        {
 
            // First integer in the list
            if (k % 3 == 0)
            {
                u.Add(v[k] * 6);
            }
             
            // Second integer in the list
            else if (k % 3 == 1)
            {
 
                u.Add(v[k] * 15);
            }
             
            // Third integer in the list
            else
            {
                u.Add(v[k] * 10);
            }
        }
        k--;
 
        // Generate (N - 1)th term
        u.Add(v[k] * 7);
 
        // Generate Nth term
        u.Add(7 * 11);
 
        // Modify first term
        u[0] = u[0] * 11;
 
        // Print the sequence
        for (int i = 0; i < u.Count; i++)
        {
            Console.Write(u[i] + " ");
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int n = 4;
        printSequence(n);
    }
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// Javascript implementation of the approach
 
    let MAX = 620000;
    let prime = new Array(MAX);
    for(let i=0;i<MAX;i++)
    {
        prime[i]=0;
    }
     
    // Function for Sieve of Eratosthenes
    function Sieve()
    {
        for (let i = 2; i < MAX; i++)
        {
            if (prime[i] == 0)
            {
                for (let j = 2 * i;
                         j < MAX; j += i)
                {
                    prime[j] = 1;
                }
            }
        }
    }
     
    // Function to print the required sequence
    function printSequence(n)
    {
        Sieve();
        let v = [];
        let u = [];
  
        // Store only the required primes
        for (let i = 13; i < MAX; i++)
        {
            if (prime[i] == 0)
            {
                v.push(i);
            }
        }
          
        // Base condition
        if (n == 3)
        {
            document.write(6 + " " + 10 + " " + 15);
            return;
        }
  
        let k;
        for (k = 0; k < n - 2; k++)
        {
  
            // First integer in the list
            if (k % 3 == 0)
            {
                u.push(v[k] * 6);
            }
              
            // Second integer in the list
            else if (k % 3 == 1)
            {
  
                u.push(v[k] * 15);
            }
              
            // Third integer in the list
            else
            {
                u.push(v[k] * 10);
            }
        }
        k--;
  
        // Generate (N - 1)th term
        u.push(v[k] * 7);
  
        // Generate Nth term
        u.push(7 * 11);
  
        // Modify first term
        u[0] = u[0] * 11;
  
        // Print the sequence
        for (let i = 0; i < u.length; i++)
        {
            document.write(u[i] + " ");
        }
    }
     
    // Driver code
    let n = 4;
    printSequence(n);
 
 
// This code is contributed by rag2127
</script>


Output: 

858 255 119 77

 

Time Complexity : O(n*log(n))

Space Complexity: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments