Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICount the nodes in the given tree whose weight is prime

Count the nodes in the given tree whose weight is prime

Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose weight is prime.
Examples: 
 

Input: 
 

Output:
Only the weights of the nodes 1 and 3 are prime. 
 

 

Algorithm:

Step 1: Start
Step 2: Initialize static variable of int type with 0 which will count a number of nodes with prime weight.
Step 3: Create a Static vector to store integer value and name it “graph”.
Step 4: Create a static array of integer type to store the weights of the node
Step 5: Create a function of the static type and name it “isprime” which takes an integer value as a parameter.
            a. will return true if the number or weight is prime and false if it is not prime.
Step 6: Create a static function named it “dfs” with a void return type that takes node and parent as input.
           a. If the weight of the current node is a prime, the dfs() method will add one to the global variable and.
           b. To prevent returning to the previous node, iterate through the current node’s nearby nodes, calling the dfs()                                    method recursively for each one except for the parent node.
Step 7: End

Approach: Perform dfs on the tree and for every node, check if it’s weight is prime or not.
Below is the implementation of above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int ans = 0;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function that returns true
// if n is prime
bool isprime(int n)
{
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0)
            return false;
    return true;
}
 
// Function to perform dfs
void dfs(int node, int parent)
{
    // If weight of node is prime or not
    if (isprime(weight[node]))
        ans += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
  
static int ans = 0;
 
static Vector<Integer>[] graph = new Vector[100];
static int[] weight = new int[100];
  
// Function that returns true
// if n is prime
static boolean isprime(int n)
{
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0)
            return false;
    return true;
}
  
// Function to perform dfs
static void dfs(int node, int parent)
{
    // If weight of node is prime or not
    if (isprime(weight[node]))
        ans += 1;
  
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
  
// Driver code
public static void main(String[] args)
{
    for (int i = 0; i < 100; i++)
        graph[i] = new Vector<>();
     
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
  
    // Edges of the tree
    graph[1].add(2);
    graph[2].add(3);
    graph[2].add(4);
    graph[1].add(5);
  
    dfs(1, 1);
  
    System.out.print(ans);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
ans = 0
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function that returns true
# if n is prime
def isprime(n):
    i = 2
    while(i * i <= n):
        if (n % i == 0):
            return False
        i += 1
    return True
 
# Function to perform dfs
def dfs(node, parent):
    global ans
     
    # If weight of the current node is even
    if (isprime(weight[node])):
        ans += 1;
     
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
 
# Weights of the node
weight[1] = 5
weight[2] = 10
weight[3] = 11
weight[4] = 8
weight[5] = 6
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
 
dfs(1, 1)
print(ans)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of the approach
using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
 
class GFG{
     
static int ans = 0;
static ArrayList[] graph = new ArrayList[100];
static int[] weight = new int[100];
 
// Function that returns true
// if n is prime
static bool isprime(int n)
{
    for(int i = 2; i * i <= n; i++)
        if (n % i == 0)
            return false;
             
    return true;
}
 
// Function to perform dfs
static void dfs(int node, int parent)
{
     
    // If weight of node is prime or not
    if (isprime(weight[node]))
        ans += 1;
 
    foreach(int to in graph[node])
    {
        if (to == parent)
            continue;
             
        dfs(to, node);
    }
}
     
// Driver Code
public static void Main(string[] args)
{
    for(int i = 0; i < 100; i++)
        graph[i] = new ArrayList();
     
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
 
    dfs(1, 1);
 
    Console.Write(ans);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// Javascript implementation of the approach
     
    let ans=0;
     
    let graph = new Array(100);
     
     
    let weight = new Array(100);
    for(let i=0;i<100;i++)
    {
        graph[i]=[];
        weight[i]=0;
    }
     
    // Function that returns true
    // if n is prime
    function isprime(n)
    {
        for (let i = 2; i * i <= n; i++)
            if (n % i == 0)
                return false;
        return true;
    }
     
    // Function to perform dfs
    function dfs(node,parent)
    {
         // If weight of node is prime or not
        if (isprime(weight[node]))
            ans += 1;
        for(let to=0;to<graph[node].length;to++)
        {
            if(graph[node][to] == parent)
                continue
            dfs(graph[node][to], node);  
        }
         
    }
     
    // Driver code
     
    x = 15;
   
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
       
   
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
     
     
    dfs(1, 1);
   
    document.write( ans);
     
    // This code is contributed by unknown2108
     
</script>


Output

2







Complexity Analysis: 
 

  • Time Complexity: O(N*sqrt(V)), where V is the maximum weight of a node in the given tree. 
    In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) when there are N total nodes in the tree. Also, while processing every node, in order to check if the node value is prime or not, a loop up to sqrt(V) is being run, where V is the weight of the node. Hence for every node, there is an added complexity of O(sqrt(V)). Therefore, the time complexity is O(N*sqrt(V)).
  • Auxiliary Space: O(1). 
    Any extra space is not required, so the space complexity is constant.

Another approach:

Approach Steps:

1. Define a struct for the binary tree node with an integer value, and left and right child pointers.

2. Write a function to check if a number is prime or not.

3. Write a recursive function to count the nodes in the tree whose weight is prime.

4. The base case for the recursive function is when the root node is NULL, in which case we return 0.

5. If the root node’s value is prime, we increment the count by 1.

6. Recursively call the function on the left and right subtrees and add the returned counts to the current count.

7. Return the final count.

C++




// C++ program to count the number of nodes in a binary tree
// whose weight is prime
#include <cmath>
#include <iostream>
 
using namespace std;
 
// Definition for a binary tree node.
struct TreeNode {
    int val;
    struct TreeNode* left;
    struct TreeNode* right;
};
 
// Function to check if a number is prime
bool is_prime(int num)
{
    if (num <= 1) {
        return false;
    }
    for (int i = 2; i <= num / 2; i++) {
        if (num % i == 0) {
            return false;
        }
    }
    return true;
}
 
// Function to count the nodes in the tree whose weight is
// prime
int count_prime_nodes(TreeNode* root)
{
    if (root == NULL) {
        return 0;
    }
    int count = 0;
    if (is_prime(root->val)) {
        count++;
    }
    count += count_prime_nodes(root->left);
    count += count_prime_nodes(root->right);
    return count;
}
 
int main()
{
    // Create a binary tree
    TreeNode* root = new TreeNode();
    root->val = 5;
    root->left = new TreeNode();
    root->left->val = 3;
    root->left->left = NULL;
    root->left->right = NULL;
    root->right = new TreeNode();
    root->right->val = 7;
    root->right->left = new TreeNode();
    root->right->left->val = 2;
    root->right->left->left = NULL;
    root->right->left->right = NULL;
    root->right->right = NULL; // Count the nodes in the
                               // tree whose weight is prime
    int count = count_prime_nodes(root);
    cout << "The number of nodes in the tree whose weight "
            "is prime is "
         << count << endl;
 
    return 0;
}


C




#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
 
// Definition for a binary tree node.
struct TreeNode {
    int val;
    struct TreeNode* left;
    struct TreeNode* right;
};
 
// Function to check if a number is prime
bool is_prime(int num) {
    if (num <= 1) {
        return false;
    }
    for (int i = 2; i <= num/2; i++) {
        if (num % i == 0) {
            return false;
        }
    }
    return true;
}
 
// Function to count the nodes in the tree whose weight is prime
int count_prime_nodes(struct TreeNode* root) {
    if (root == NULL) {
        return 0;
    }
    int count = 0;
    if (is_prime(root->val)) {
        count++;
    }
    count += count_prime_nodes(root->left);
    count += count_prime_nodes(root->right);
    return count;
}
 
int main() {
    // Create a binary tree
    struct TreeNode* root = (struct TreeNode*) malloc(sizeof(struct TreeNode));
    root->val = 5;
    root->left = (struct TreeNode*) malloc(sizeof(struct TreeNode));
    root->left->val = 3;
    root->left->left = NULL;
    root->left->right = NULL;
    root->right = (struct TreeNode*) malloc(sizeof(struct TreeNode));
    root->right->val = 7;
    root->right->left = (struct TreeNode*) malloc(sizeof(struct TreeNode));
    root->right->left->val = 2;
    root->right->left->left = NULL;
    root->right->left->right = NULL;
    root->right->right = NULL;
     
    // Count the nodes in the tree whose weight is prime
    int count = count_prime_nodes(root);
    printf("The number of nodes in the tree whose weight is prime is %d\n", count);
     
    return 0;
}


Java




// Java program to count the number of nodes in a binary
// tree whose weight is prime
import java.lang.Math;
 
// Definition for a binary tree node.
class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int val)
    {
        this.val = val;
        left = null;
        right = null;
    }
}
 
public class CountPrimeNodes {
    // Function to check if a number is prime
    static boolean isPrime(int num)
    {
        if (num <= 1) {
            return false;
        }
        for (int i = 2; i <= Math.sqrt(num); i++) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }
    // Function to count the nodes in the tree whose weight
    // is prime
    static int countPrimeNodes(TreeNode root)
    {
        if (root == null) {
            return 0;
        }
        int count = 0;
        if (isPrime(root.val)) {
            count++;
        }
        count += countPrimeNodes(root.left);
        count += countPrimeNodes(root.right);
        return count;
    }
 
    public static void main(String[] args)
    {
        // Create a binary tree
        TreeNode root = new TreeNode(5);
        root.left = new TreeNode(3);
        root.left.left = null;
        root.left.right = null;
        root.right = new TreeNode(7);
        root.right.left = new TreeNode(2);
        root.right.left.left = null;
        root.right.left.right = null;
        root.right.right = null;
 
        // Count the nodes in the tree whose weight is prime
        int count = countPrimeNodes(root);
        System.out.println(
            "The number of nodes in the tree whose weight is prime is "
            + count);
    }
}
// This code is contributed by user_dtewbxkn77n


Python3




import math
 
# Definition for a binary tree node
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
 
# Function to check if a number is prime
def is_prime(num):
    if num <= 1:
        return False
    for i in range(2, int(num/2)+1):
        if num % i == 0:
            return False
    return True
 
# Function to count the nodes in the tree whose weight is prime
def count_prime_nodes(root):
    if root is None:
        return 0
    count = 0
    if is_prime(root.val):
        count += 1
    count += count_prime_nodes(root.left)
    count += count_prime_nodes(root.right)
    return count
 
# Create a binary tree
root = TreeNode(5)
root.left = TreeNode(3)
root.right = TreeNode(7)
root.right.left = TreeNode(2)
 
# Count the nodes in the tree whose weight is prime
count = count_prime_nodes(root)
print(f"The number of nodes in the tree whose weight is prime is {count}")


C#




using System;
 
// Definition for a binary tree node.
class TreeNode {
    public int val;
    public TreeNode left;
    public TreeNode right;
    public TreeNode(int val = 0, TreeNode left = null, TreeNode right = null) {
        this.val = val;
        this.left = left;
        this.right = right;
    }
}
 
class MainClass {
    // Function to check if a number is prime
    static bool is_prime(int num) {
        if (num <= 1) {
            return false;
        }
        for (int i = 2; i <= num / 2; i++) {
            if (num % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    // Function to count the nodes in the tree whose weight is prime
    static int count_prime_nodes(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int count = 0;
        if (is_prime(root.val)) {
            count++;
        }
        count += count_prime_nodes(root.left);
        count += count_prime_nodes(root.right);
        return count;
    }
 
    public static void Main() {
        // Create a binary tree
        TreeNode root = new TreeNode(5);
        root.left = new TreeNode(3);
        root.left.left = null;
        root.left.right = null;
        root.right = new TreeNode(7);
        root.right.left = new TreeNode(2);
        root.right.left.left = null;
        root.right.left.right = null;
        root.right.right = null;
 
        // Count the nodes in the tree whose weight is prime
        int count = count_prime_nodes(root);
        Console.WriteLine("The number of nodes in the tree whose weight is prime is " + count);
    }
}


Javascript




// JavaScript program to count the number of nodes in a binary tree
// whose weight is prime
 
// Definition for a binary tree node.
class TreeNode {
    constructor(val) {
        this.val = val;
        this.left = null;
        this.right = null;
    }
}
 
// Function to check if a number is prime
function is_prime(num) {
    if (num <= 1) {
        return false;
    }
    for (let i = 2; i <= Math.floor(Math.sqrt(num)); i++) {
        if (num % i === 0) {
            return false;
        }
    }
    return true;
}
 
// Function to count the nodes in the tree whose weight is prime
function count_prime_nodes(root) {
    if (root === null) {
        return 0;
    }
    let count = 0;
    if (is_prime(root.val)) {
        count++;
    }
    count += count_prime_nodes(root.left);
    count += count_prime_nodes(root.right);
    return count;
}
 
// Create a binary tree
let root = new TreeNode(5);
root.left = new TreeNode(3);
root.right = new TreeNode(7);
root.right.left = new TreeNode(2);
 
// Count the nodes in the tree whose weight is prime
let count = count_prime_nodes(root);
console.log("The number of nodes in the tree whose weight is prime is " + count);


Output

The number of nodes in the tree whose weight is prime is 4








Time Complexity:
The time complexity of this algorithm is O(n), where n is the number of nodes in the binary tree, as we need to visit each node once.

Space Complexity:
The space complexity of this algorithm is O(h), where h is the height of the binary tree, as we need to store the call stack for the recursive function calls up to the maximum depth of the tree. In the worst case, the binary tree can be skewed, and the height of the tree can be equal to the number of nodes in the tree, in which case the space complexity is O(n).

Approach(Using BFS):This approach is similar to the DFS approach, except that we use a breadth-first search instead of a depth-first search.

Algorithm:

  1. Define a variable count and initialize it to 0.
  2. Define a function is_prime(n) that returns True if n is prime, and False otherwise.
  3. Define a function bfs(root) that performs a breadth-first search on the tree, starting from root.
  4. In bfs(root):
    a. Define a queue q and add root to it.
    b. While q is not empty:
    i. Pop a node from q.
    ii. If the weight of the node is prime, increment count.
    iii. If the left child of the node exists, add it to q.
    iv. If the right child of the node exists, add it to q.
  5. Call bfs(root), where root is the root node of the tree.
  6. Return count.

C++




#include <iostream>
#include <queue>
#include <vector>
 
using namespace std;
 
// Node structure
struct Node {
    int weight;
    vector<Node*> children;
};
 
// Function to check if a number is prime
bool isPrime(int n) {
    if (n <= 1)
        return false;
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0)
            return false;
    }
    return true;
}
 
// Function to count the number of nodes in the tree whose
// weight is prime using BFS
int countPrimeNodes(Node* root) {
    int count = 0;
    queue<Node*> q;
    q.push(root);
    while (!q.empty()) {
        Node* current = q.front();
        q.pop();
        if (isPrime(current->weight))
            count++;
        for (Node* child : current->children)
            q.push(child);
    }
    return count;
}
 
// Test the code
int main() {
    // Create the tree
    Node* root = new Node{ 5, {} };
    Node* node1 = new Node{ 4, {} };
    Node* node2 = new Node{ 3, {} };
    Node* node3 = new Node{ 7, {} };
    Node* node4 = new Node{ 2, {} };
    root->children.push_back(node1);
    root->children.push_back(node2);
    node1->children.push_back(node3);
    node2->children.push_back(node4);
 
    // Count the number of nodes whose weight is prime
    int primeCount = countPrimeNodes(root);
    cout << "Number of nodes whose weight is prime: " << primeCount << endl;
 
    // Free memory
    delete node4;
    delete node3;
    delete node2;
    delete node1;
    delete root;
 
    return 0;
}


Java




import java.util.*;
 
// Node class representing a node in the tree
class Node {
    int weight;
    List<Node> children;
 
    // Constructor
    Node(int weight) {
        this.weight = weight;
        this.children = new ArrayList<>();
    }
}
 
public class Main {
 
    // Function to check if a number is prime
    static boolean isPrime(int n) {
        if (n <= 1)
            return false;
        for (int i = 2; i * i <= n; i++) {
            if (n % i == 0)
                return false;
        }
        return true;
    }
 
    // Function to count the number of nodes in the tree whose
    // weight is prime using BFS
    static int countPrimeNodes(Node root) {
        int count = 0;
        Queue<Node> queue = new LinkedList<>();
        queue.add(root);
 
        while (!queue.isEmpty()) {
            Node current = queue.poll();
            if (isPrime(current.weight))
                count++;
            for (Node child : current.children)
                queue.add(child);
        }
        return count;
    }
//Driver code
    public static void main(String[] args) {
        // Create the tree
        Node root = new Node(5);
        Node node1 = new Node(4);
        Node node2 = new Node(3);
        Node node3 = new Node(7);
        Node node4 = new Node(2);
        root.children.add(node1);
        root.children.add(node2);
        node1.children.add(node3);
        node2.children.add(node4);
 
        // Count the number of nodes whose weight is prime
        int primeCount = countPrimeNodes(root);
        System.out.println("Number of nodes whose weight is prime: " + primeCount);
 
         
    }
}


Python3




## Python3 program for the above approach
from queue import Queue
 
# Node class
class Node:
    def __init__(self, weight):
        self.weight = weight
        self.children = []
 
# Function to check if a number is prime
def is_prime(n):
    if n <= 1:
        return False
    for i in range(2, int(n ** 0.5) + 1):
        if n % i == 0:
            return False
    return True
 
# Function to count the number of nodes in the
# tree whose weight is prime using BFS
def count_prime_nodes(root):
    count = 0
    q = Queue()
    q.put(root)
    while not q.empty():
        current = q.get()
        if is_prime(current.weight):
            count += 1
        for child in current.children:
            q.put(child)
    return count
 
# Driver Code
if __name__ == '__main__':
    # Create the tree
    root = Node(5)
    node1 = Node(4)
    node2 = Node(3)
    node3 = Node(7)
    node4 = Node(2)
    root.children.extend([node1, node2])
    node1.children.append(node3)
    node2.children.append(node4)
 
    # Count the number of nodes whose weight is prime
    prime_count = count_prime_nodes(root)
    print("Number of nodes whose weight is prime:", prime_count)
 
    # Free memory (Python uses automatic memory management - no
    # need to explicitly delete objects)


C#




using System;
using System.Collections.Generic;
 
namespace PrimeNodeCount
{
    // Node structure
    public class Node
    {
        public int Weight;
        public List<Node> Children = new List<Node>();
    }
 
    class Program
    {
        // Function to check if a number is prime
        static bool IsPrime(int n)
        {
            if (n <= 1)
                return false;
            for (int i = 2; i * i <= n; i++)
            {
                if (n % i == 0)
                    return false;
            }
            return true;
        }
 
        // Function to count the number of nodes in the tree whose
        // weight is prime using BFS
        static int CountPrimeNodes(Node root)
        {
            int count = 0;
            Queue<Node> q = new Queue<Node>();
            q.Enqueue(root);
            while (q.Count > 0)
            {
                Node current = q.Dequeue();
                if (IsPrime(current.Weight))
                    count++;
                foreach (Node child in current.Children)
                    q.Enqueue(child);
            }
            return count;
        }
 
        static void Main(string[] args)
        {
            // Create the tree
            Node root = new Node { Weight = 5 };
            Node node1 = new Node { Weight = 4 };
            Node node2 = new Node { Weight = 3 };
            Node node3 = new Node { Weight = 7 };
            Node node4 = new Node { Weight = 2 };
            root.Children.Add(node1);
            root.Children.Add(node2);
            node1.Children.Add(node3);
            node2.Children.Add(node4);
 
            // Count the number of nodes whose weight is prime
            int primeCount = CountPrimeNodes(root);
            Console.WriteLine("Number of nodes whose weight is prime: " + primeCount);
 
            // No need to manually free memory in C#
        }
    }
}


Javascript




class Node {
    constructor(weight, children) {
        this.weight = weight;
        this.children = children || [];
    }
}
 
// Function to check if a number is prime
function isPrime( n) {
    if (n <= 1)
        return false;
    for (let i = 2; i * i <= n; i++) {
        if (n % i == 0)
            return false;
    }
    return true;
}
 
// Function to count the number of nodes in the tree whose
// weight is prime using BFS
function countPrimeNodes(root) {
    let count = 0;
    let q = [root];
    while (q.length > 0) {
        let current = q.shift();
        if (isPrime(current.weight))
            count++;
        for (let child of current.children)
            q.push(child);
    }
    return count;
}
 
// Test the code
    // Create the tree
    let root = new Node(5, []);
    let node1 = new Node(4, []);
    let node2 = new Node(3, []);
    let node3 = new Node(7, []);
    let node4 = new Node(2, []);
    root.children.push(node1, node2);
    node1.children.push(node3);
    node2.children.push(node4);
 
 
    // Count the number of nodes whose weight is prime
    let primeCount = countPrimeNodes(root);
    console.log("Number of nodes whose weight is prime: " + primeCount);


Output

Number of nodes whose weight is prime: 4








Time Complexity:  O(N), where N is the number of nodes in the tree. This is because the code performs a BFS traversal of the tree, visiting each node once, and checking if its weight is prime. The isPrime function has a time complexity of O(sqrt(N)), which is the worst-case scenario when the input number is prime. However, since the isPrime function is called only on the weights of the nodes, the overall time complexity of the code is O(N).

Auxiliary Space: O(N), where N is the number of nodes in the tree. This is because the code uses a queue to perform the BFS traversal, and the size of the queue can be at most N in the worst case when the tree is a complete binary tree. Additionally, the Node structure has a children vector that stores the child nodes of each node. The size of the children vector can be at most N-1 in the worst case, where each node has only one child except for the root node. Therefore, the total auxiliary space used by the code is O(N + N-1), which simplifies to O(N).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments