Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIPrint alternate nodes from all levels of a Binary Tree

Print alternate nodes from all levels of a Binary Tree

Given a binary tree, the task is to traverse each level of the given binary tree from left to right and print every alternate encountered at a level.

Examples:

Input: 
 

Output: 


3 9 
5 7 

Input: 
 

Output: 
71 
88 
4 6 
8 10 13 
 

Approach: The problem can be solved by performing Level Order Traversal traversal on the given binary tree. Follow the steps below to solve the problem:  

  1. Initialize a Queue, to store the nodes of each level of the given binary tree.
  2. Perform level order traversal and print alternate nodes from each level of the Binary Tree

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a Node
struct Node {
    int data;
    Node* left;
    Node* right;
    Node(int val)
    {
        data = val;
        left = right = NULL;
    }
};
 
// Print alternate nodes of
// a binary tree
void PrintAlternate(Node* root)
{
    // Store nodes of each level
    queue<Node*> Q;
    Q.push(root);
 
    while (!Q.empty()) {
        // Store count of nodes
        // of current level
        int N = Q.size();
 
        // Print alternate nodes of
        // the current level
        for (int i = 0; i < N; i++) {
            Node* temp = Q.front();
            Q.pop();
 
            if (i % 2 == 0) {
                cout << temp->data << " ";
            }
 
            // If left child exists
            if (temp->left) {
                // Store left child
                Q.push(temp->left);
            }
 
            // If right child exists
            if (temp->right) {
                // Store right child
                Q.push(temp->right);
            }
        }
        cout << endl;
    }
}
 
// Driver Code
int main()
{
    Node* root;
 
    // Create a tree
    root = new Node(71);
    root->left = new Node(88);
    root->right = new Node(99);
    root->left->left = new Node(4);
    root->left->right = new Node(5);
    root->right->left = new Node(6);
    root->right->right = new Node(7);
    root->left->left->left = new Node(8);
    root->left->left->right = new Node(9);
    root->left->right->left = new Node(10);
    root->left->right->right = new Node(11);
    root->right->left->right = new Node(13);
    root->right->right->left = new Node(14);
    PrintAlternate(root);
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG{
 
// Structure of a Node
static class Node
{
  int data;
  Node left;
  Node right;
  Node(int val)
  {
    data = val;
    left = right = null;
  }
};
 
// Print alternate nodes of
// a binary tree
static void PrintAlternate(Node root)
{
  // Store nodes of each level
  Queue<Node> Q = new LinkedList<>();
  Q.add(root);
 
  while (!Q.isEmpty())
  {
    // Store count of nodes
    // of current level
    int N = Q.size();
 
    // Print alternate nodes of
    // the current level
    for (int i = 0; i < N; i++)
    {
      Node temp = Q.peek();
      Q.remove();
 
      if (i % 2 == 0)
      {
        System.out.print(temp.data + " ");
      }
 
      // If left child exists
      if (temp.left!=null)
      {
        // Store left child
        Q.add(temp.left);
      }
 
      // If right child exists
      if (temp.right!=null)
      {
        // Store right child
        Q.add(temp.right);
      }
    }
    System.out.println();
  }
}
 
// Driver Code
public static void main(String[] args)
{
  Node root;
 
  // Create a tree
  root = new Node(71);
  root.left = new Node(88);
  root.right = new Node(99);
  root.left.left = new Node(4);
  root.left.right = new Node(5);
  root.right.left = new Node(6);
  root.right.right = new Node(7);
  root.left.left.left = new Node(8);
  root.left.left.right = new Node(9);
  root.left.right.left = new Node(10);
  root.left.right.right = new Node(11);
  root.right.left.right = new Node(13);
  root.right.right.left = new Node(14);
  PrintAlternate(root);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to implement
# the above approach
 
# Structure of a Node
class newNode:
     
    def __init__(self, val):
         
        self.data = val
        self.left = None
        self.right = None
 
# Print alternate nodes of
# a binary tree
def PrintAlternate(root):
     
    # Store nodes of each level
    Q = []
    Q.append(root)
 
    while (len(Q)):
         
        # Store count of nodes
        # of current level
        N = len(Q)
 
        # Print alternate nodes of
        # the current level
        for i in range(N):
            temp = Q[0]
            Q.remove(Q[0])
 
            if (i % 2 == 0):
                print(temp.data, end = " ")
 
            # If left child exists
            if (temp.left):
                 
                # Store left child
                Q.append(temp.left)
 
            # If right child exists
            if (temp.right):
                 
                # Store right child
                Q.append(temp.right)
                 
        print("\n", end = "")
 
# Driver Code
if __name__ == '__main__':
     
    # Create a tree
    root = newNode(71)
    root.left = newNode(88)
    root.right = newNode(99)
    root.left.left = newNode(4)
    root.left.right = newNode(5)
    root.right.left = newNode(6)
    root.right.right = newNode(7)
    root.left.left.left = newNode(8)
    root.left.left.right = newNode(9)
    root.left.right.left = newNode(10)
    root.left.right.right = newNode(11)
    root.right.left.right = newNode(13)
    root.right.right.left = newNode(14)
     
    PrintAlternate(root)
 
# This code is contributed by ipg2016107


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Structure of a Node
class Node
{
  public int data;
  public Node left;
  public Node right;
  public Node(int val)
  {
    data = val;
    left = right = null;
  }
};
 
// Print alternate nodes of
// a binary tree
static void PrintAlternate(Node root)
{
  // Store nodes of each level
  Queue<Node> Q = new Queue<Node>();
  Q.Enqueue(root);
 
  while (Q.Count != 0)
  {
    // Store count of nodes
    // of current level
    int N = Q.Count;
 
    // Print alternate nodes of
    // the current level
    for (int i = 0; i < N; i++)
    {
      Node temp = Q.Peek();
      Q.Dequeue();
 
      if (i % 2 == 0)
      {
        Console.Write(temp.data + " ");
      }
 
      // If left child exists
      if (temp.left!=null)
      {
        // Store left child
        Q.Enqueue(temp.left);
      }
 
      // If right child exists
      if (temp.right!=null)
      {
        // Store right child
        Q.Enqueue(temp.right);
      }
    }
    Console.WriteLine();
  }
}
 
// Driver Code
public static void Main(String[] args)
{
  Node root;
 
  // Create a tree
  root = new Node(71);
  root.left = new Node(88);
  root.right = new Node(99);
  root.left.left = new Node(4);
  root.left.right = new Node(5);
  root.right.left = new Node(6);
  root.right.right = new Node(7);
  root.left.left.left = new Node(8);
  root.left.left.right = new Node(9);
  root.left.right.left = new Node(10);
  root.left.right.right = new Node(11);
  root.right.left.right = new Node(13);
  root.right.right.left = new Node(14);
  PrintAlternate(root);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Javascript program for the above approach
    
    // Structure of a Node
    class Node
    {
        constructor(val) {
           this.left = null;
           this.right = null;
           this.data = val;
        }
    }
 
    // Print alternate nodes of
    // a binary tree
    function PrintAlternate(root)
    {
      // Store nodes of each level
      let Q = [];
      Q.push(root);
 
      while (Q.length > 0)
      {
        // Store count of nodes
        // of current level
        let N = Q.length;
 
        // Print alternate nodes of
        // the current level
        for (let i = 0; i < N; i++)
        {
          let temp = Q[0];
          Q.shift();
 
          if (i % 2 == 0)
          {
            document.write(temp.data + " ");
          }
 
          // If left child exists
          if (temp.left!=null)
          {
            // Store left child
            Q.push(temp.left);
          }
 
          // If right child exists
          if (temp.right!=null)
          {
            // Store right child
            Q.push(temp.right);
          }
        }
        document.write("</br>");
      }
    }
     
    let root;
  
    // Create a tree
    root = new Node(71);
    root.left = new Node(88);
    root.right = new Node(99);
    root.left.left = new Node(4);
    root.left.right = new Node(5);
    root.right.left = new Node(6);
    root.right.right = new Node(7);
    root.left.left.left = new Node(8);
    root.left.left.right = new Node(9);
    root.left.right.left = new Node(10);
    root.left.right.right = new Node(11);
    root.right.left.right = new Node(13);
    root.right.right.left = new Node(14);
    PrintAlternate(root);
 
</script>


Output: 

71 
88 
4 6 
8 10 13

 

Time Complexity: O(N) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments