Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AISum of series with alternate signed squares of AP

Sum of series with alternate signed squares of AP

We are given the Integer n and also in the next line 2*n integers which represent a Arithmetic Progression series a1, a2, a3…a2n they are in AP. We need to find the sum of a12 – a22 + a32…. + a2n-12 – a2n2 .
Examples : 
 

Input : n = 2
        a[] = {1 2 3 4}
Output : -10
Explanation : 12 - 22 + 
32 42 = -10.

Input : n = 3
        a[] = {2 4 6 8 10 12}
Output : -84

 

Simple Approach : We one by one find the sum of the square of the series with even terms negative and odd term as positive term . 
 

C++




// CPP program to find sum of
// series with alternate signed
// square AP sums.
#include <bits/stdc++.h>
using namespace std;
 
// function to calculate series sum
int seriesSum(int n, int a[])
{
    int res = 0;
    for (int i = 0; i < 2 * n; i++)
    {
        if (i % 2 == 0)
            res += a[i] * a[i];
        else
            res -= a[i] * a[i];
    }
    return res;
}
 
// Driver Code
int main()
{
    int n = 2;
    int a[] = { 1, 2, 3, 4 };
    cout << seriesSum(n, a);
    return 0;
}


Java




// Java program to find sum of
// series with alternate signed
// square AP sums.
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG
{
 
    // function to calculate
    // series sum
    static int seriesSum(int n,
                         int[] a)
    {
        int res = 0, i;
        for (i = 0; i < 2 * n; i++)
        {
            if (i % 2 == 0)
                res += a[i] * a[i];
            else
                res -= a[i] * a[i];
        }
        return res;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int n = 2;
        int a[] = { 1, 2, 3, 4 };
        System.out.println(seriesSum(n, a));
    }
}


Python3




# Python3 program to find sum
# of series with alternate signed 
# square AP sums.
 
# Function to calculate series sum
def seriesSum(n, a):
    res = 0
     
    for i in range(0, 2 * n):
        if (i % 2 == 0):
            res += a[i] * a[i]
        else:
            res -= a[i] * a[i]
    return res
 
# Driver code
n = 2
a = [1, 2, 3, 4]
print(seriesSum(n, a))
 
# This code is contributed by Ajit.


C#




// C# program to find sum of
// series with alternate signed 
// square AP sums.
using System;
 
class GFG
{
 
    // function to calculate
    // series sum
    static int seriesSum(int n,
                         int[] a)
    {
        int res = 0, i;
        for (i = 0; i < 2 * n; i++)
        {
            if (i % 2 == 0)
                res += a[i] * a[i];
            else
                res -= a[i] * a[i];
        }
        return res;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 2;
        int []a = { 1, 2, 3, 4 };
        Console.WriteLine(seriesSum(n, a));
    }
}
 
//This code is contributed by vt_m.


PHP




<?php
// PHP program to find sum of
// series with alternate signed 
// square AP sums.
 
// function to calculate
// series sum
function seriesSum($n, $a)
{
    $res = 0;
    for ( $i = 0; $i < 2 * $n; $i++)
    {
        if ($i % 2 == 0)
            $res += $a[$i] * $a[$i];
        else
            $res -= $a[$i] * $a[$i];
    }
    return $res;
}
 
    // Driver Code
    $n = 2;
    $a = array(1, 2, 3, 4);
    echo seriesSum($n, $a);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
// JavaScript program to find sum of
// series with alternate signed
 
    // function to calculate
    // series sum
    function seriesSum(n, a)
    {
        let res = 0, i;
        for (i = 0; i < 2 * n; i++)
        {
            if (i % 2 == 0)
                res += a[i] * a[i];
            else
                res -= a[i] * a[i];
        }
        return res;
    }
 
// Driver Code
 
        let n = 2;
        let a = [1, 2, 3, 4];
        document.write(seriesSum(n, a));
 
// This code is contributed by code_hunt.
</script>


Output : 

-10

 

Time complexity: O(2*n)

Auxiliary Space: O(1) since using constant space for variables 

Efficient Approach:Use of Arithmetic progression Application 
We know that common difference d = a2 – a1 = a3 – a2 = a4 – a3
Result = a12 – a22 + a32…. + a2n-12 – a2n2
= (a1 – a2)*(a1 + a2) + (a3 – a4)*(a3 +a4)+….+(a2n-1 – a2n)*(a2n-1 + a2n)
So as common difference is common to the series then : 
(a1 – a2)[a1 + a2 + a3…a2n]
now we can write : 
 

(-d)*(Sum of the term of the 2n term of AP)
(-d)*[((2*n)*(a1 + a2n))/2]
now we know that common difference is : d = (a1 - a2)
Then the difference between : g = (a2n - a1)
So we can conclude that g = d*(2*n - 1)
the we can replace d by : g/(2*n - 1)

So our result becomes : (n/(2*n - 1)) * (a12 - a2n2)

 

C++




// Efficient CPP program to
// find sum of series with
// alternate signed square AP sums.
#include <bits/stdc++.h>
using namespace std;
 
// function to calculate
// series sum
int seriesSum(int n, int a[])
{
    return n * (a[0] * a[0] - a[2 * n - 1] *
                a[2 * n - 1]) / (2 * n - 1);
}
 
// Driver code
int main()
{
    int n = 2;
    int a[] = { 1, 2, 3, 4 };
    cout << seriesSum(n, a);
    return 0;
}


Java




// Efficient Java program to 
// find sum of series with
// alternate signed square AP sums.
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG
{
    static int seriesSum(int n,
                         int[] a)
    {
    return n * (a[0] * a[0] - a[2 * n - 1] *
                a[2 * n - 1]) / (2 * n - 1);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int n = 2;
        int a[] = { 1, 2, 3, 4 };
        System.out.println(seriesSum(n, a));
    }
}


Python3




# Efficient Python3 program 
# to find sum of series with 
# alternate signed square AP sums.
 
# Function to calculate
# series sum
def seriesSum(n, a):
 
    return (n * (a[0] * a[0] - a[2 * n - 1] *
                 a[2 * n - 1]) / (2 * n - 1))
 
# Driver code
n = 2
a = [1, 2, 3, 4]
print(int(seriesSum(n, a)))
 
# This code is contributed
# by Smitha Dinesh Semwal.


C#




// Efficient C# program to find sum
// of series with alternate signed
// square AP sums.
using System;
 
class GFG
{
    static int seriesSum(int n, int[] a)
    {
    return n * (a[0] * a[0] - a[2 * n - 1] *
                a[2 * n - 1]) / (2 * n - 1);
    }
 
    // Driver Code
    public static void Main()
    {
        int n = 2;
        int []a= { 1, 2, 3, 4 };
        Console.WriteLine(seriesSum(n, a));
    }
}
 
// This code is contributed by anuj_67..


PHP




<?php
// Efficient PHP program to
// find sum of series with
// alternate signed square AP sums.
 
// function to calculate
// series sum
function seriesSum( $n, $a)
{
    return $n * ($a[0] * $a[0] -
                 $a[2 * $n - 1] *
                 $a[2 * $n - 1]) /
                 (2 * $n - 1);
}
 
    // Driver code
    $n = 2;
    $a = array(1, 2, 3, 4);
    echo seriesSum($n, $a);
     
// This code is contributed by anuj_67..
?>


Javascript




<script>
// Efficient Javascript program to
// find sum of series with
// alternate signed square AP sums.
 
// function to calculate
// series sum
function seriesSum(n, a)
{
    return n * (a[0] * a[0] -
                 a[2 * n - 1] *
                 a[2 * n - 1]) /
                 (2 * n - 1);
}
 
    // Driver code
    let n = 2;
    a = [1, 2, 3, 4];
    document.write(seriesSum(n, a));
     
// This code is contributed by _saurabh_jaiswal.
</script>


Output : 

-10

 

Time complexity: O(1) since performing constant operations

Auxiliary Space: O(1) since using constant space for variables 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments