Monday, January 20, 2025
Google search engine
HomeData Modelling & AIFind the smallest value of N such that sum of first N...

Find the smallest value of N such that sum of first N natural numbers is ≥ X

Given a positive integer X (1 ? X ? 106), the task is to find the minimum value N, such that the sum of first N natural numbers is ? X.

Examples: 

Input: X = 14
Output: 5
Explanation: Sum of first 5 natural numbers is 15 which is greater than X( = 14).

  • 1 + 2 = 3( < 14)
  • 1 + 2 + 3 = 6( < 14)
  • 1 + 2 + 3 + 4 = 10( < 15)
  • 1 + 2 + 3 + 4 + 5 = 15( > 14)

Input: X = 91
Output: 13

Naive Approach: The simplest approach to solve this problem is to check every value in the range [1, X] and return the first value from this range for which the sum of the first N natural numbers is found to be ? X.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if sum of first
// N natural numbers is >= X
bool isGreaterEqual(int N, int X)
{
    return (N * 1LL * (N + 1) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
int minimumPossible(int X)
{
    for (int i = 1; i <= X; i++) {
 
        // Check if sum of first i
        // natural number >= X
        if (isGreaterEqual(i, X))
            return i;
    }
}
 
// Driver Code
int main()
{
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    cout << minimumPossible(X);
    return 0;
}


Java




// Java Program to implement
// the above approach
import java.io.*;
class GFG
{
   
  // Function to check if sum of first
  // N natural numbers is >= X
  static boolean isGreaterEqual(int N, int X)
  {
    return (N * (N + 1) / 2) >= X;
  }
 
  // Finds minimum value of
  // N such that sum of first
  // N natural number >= X
  static int minimumPossible(int X)
  {
    for (int i = 1; i <= X; i++)
    {
 
      // Check if sum of first i
      // natural number >= X
      if (isGreaterEqual(i, X))
        return i;
    }
    return 0;
  }
 
  // Driver Code
  public static void main (String[] args)
  {
     
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    System.out.print(minimumPossible(X));
  }
}
 
// This code is contributed by Dharanendra L V.


Python3




# Python3 Program to implement
# the above approach
 
# Function to check if sum of first
# N natural numbers is >= X
def isGreaterEqual(N, X):
    return (N * (N + 1) // 2) >= X
 
# Finds minimum value of
# N such that sum of first
# N natural number >= X
def minimumPossible(X):
 
    for i in range(1, X + 1):
 
        # Check if sum of first i
        # natural number >= X
        if (isGreaterEqual(i, X)):
            return i
 
# Driver Code
if __name__ == '__main__':
     
    # Input
    X = 14
 
    # Finds minimum value of
    # N such that sum of first
    # N natural number >= X
    print (minimumPossible(X))
 
    # This code is contributed by mohit kumar 29.


C#




// C# Program to implement
// the above approach
using System;
public class GFG
{
 
  // Function to check if sum of first
  // N natural numbers is >= X
  static bool isGreaterEqual(int N, int X)
  {
    return (N * (N + 1) / 2) >= X;
  }
 
  // Finds minimum value of
  // N such that sum of first
  // N natural number >= X
  static int minimumPossible(int X)
  {
    for (int i = 1; i <= X; i++)
    {
 
      // Check if sum of first i
      // natural number >= X
      if (isGreaterEqual(i, X))
        return i;
    }
    return 0;
  }
 
  // Driver Code
  static public void Main ()
  {
 
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    Console.Write(minimumPossible(X));
  }
}
 
// This code is contributed by Dharanendra L V.


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to check if sum of first
// N natural numbers is >= X
function isGreaterEqual(N, X)
{
    return parseInt((N * (N + 1)) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
function minimumPossible(X)
{
    for(let i = 1; i <= X; i++)
    {
         
        // Check if sum of first i
        // natural number >= X
        if (isGreaterEqual(i, X))
            return i;
    }
}
 
// Driver Code
 
// Input
let X = 14;
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
document.write(minimumPossible(X));
 
// This code is contributed by rishavmahato348
     
</script>


Output: 

5

 

Time Complexity : O(N)
Auxiliary Space : O(1)

Efficient Method: Below is the implementation of above approach :

  1. The idea is to use binary search to solve this problem.
  2. Initialize variables low = 1, high = X and perform binary search on this range.
  3. Calculate mid = low + (high – low) / 2 and check if the sum of first mid numbers is greater than or equal to x or not.
  4. If sum ? X, store it in a variable res and set high = mid-1
  5. Otherwise, set low = mid + 1
  6. Print res, which is the required answer.

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to check if sum of first
// N natural numbers is >= X
bool isGreaterEqual(int N, int X)
{
    return (N * 1LL * (N + 1) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
int minimumPossible(int X)
{
 
    int low = 1, high = X, res = -1;
 
    // Binary Search
    while (low <= high) {
        int mid = low + (high - low) / 2;
 
        // Checks if sum of first 'mid' natural
        // numbers is greater than equal to X
        if (isGreaterEqual(mid, X)) {
            // Update res
            res = mid;
            // Update high
            high = mid - 1;
        }
        else
            // Update low
            low = mid + 1;
    }
    return res;
}
 
// Driver Code
int main()
{
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    cout << minimumPossible(X);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to check if sum of first
// N natural numbers is >= X
static boolean isGreaterEqual(int N, int X)
{
    return (N  * (N + 1) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
static int minimumPossible(int X)
{
    int low = 1, high = X, res = -1;
 
    // Binary Search
    while (low <= high)
    {
        int mid = low + (high - low) / 2;
 
        // Checks if sum of first 'mid' natural
        // numbers is greater than equal to X
        if (isGreaterEqual(mid, X))
        {
           
            // Update res
            res = mid;
           
            // Update high
            high = mid - 1;
        }
        else
            // Update low
            low = mid + 1;
    }
    return res;
}
 
// Driver Code
public static void main(String[] args)
{
   
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    System.out.print( minimumPossible(X));
}
}
 
// This code is contributed by code_hunt.


Python3




# Function to check if sum of first
# N natural numbers is >= X
def isGreaterEqual(N, X):
    return (N * (N + 1) // 2) >= X;
 
# Finds minimum value of
# N such that sum of first
# N natural number >= X
def minimumPossible(X):
  low = 1
  high = X
  res = -1;
 
  # Binary Search
  while (low <= high):
        mid = low + (high - low) // 2;
 
        # Checks if sum of first 'mid' natural
        # numbers is greater than equal to X
        if (isGreaterEqual(mid, X)):
           
            # Update res
            res = mid;
             
            # Update high
            high = mid - 1;
 
        else:
            # Update low
            low = mid + 1;
 
  return res
 
# Driver Code
if __name__ == "__main__":
   
    # Input
    X = 14;
 
    # Finds minimum value of
    # N such that sum of first
    # N natural number >= X
    print(minimumPossible(X));
 
    # This code is contributed by chitranayal.


C#




// C# program for the above approach
using System;
class GFG{
 
  // Function to check if sum of first
  // N natural numbers is >= X
  static bool isGreaterEqual(int N, int X)
  {
    return (N  * (N + 1) / 2) >= X;
  }
 
  // Finds minimum value of
  // N such that sum of first
  // N natural number >= X
  static int minimumPossible(int X)
  {
    int low = 1, high = X, res = -1;
 
    // Binary Search
    while (low <= high)
    {
      int mid = low + (high - low) / 2;
 
      // Checks if sum of first 'mid' natural
      // numbers is greater than equal to X
      if (isGreaterEqual(mid, X))
      {
 
        // Update res
        res = mid;
 
        // Update high
        high = mid - 1;
      }
      else
        // Update low
        low = mid + 1;
    }
    return res;
  }
 
 
  // Driver Code
  static public void Main()
  {
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    Console.Write( minimumPossible(X));
  }
}
 
// This code is contributed by susmitakundugoaldanga.


Javascript




<script>
 
// Function to check if sum of first
// N natural numbers is >= X
function isGreaterEqual(N, X)
{
    return parseInt((N * (N + 1)) / 2) >= X;
}
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
function minimumPossible(X)
{
 
    let low = 1, high = X, res = -1;
 
    // Binary Search
    while (low <= high) {
        let mid = low + parseInt((high - low) / 2);
 
        // Checks if sum of first 'mid' natural
        // numbers is greater than equal to X
        if (isGreaterEqual(mid, X)) {
            // Update res
            res = mid;
            // Update high
            high = mid - 1;
        }
        else
            // Update low
            low = mid + 1;
    }
    return res;
}
 
// Driver Code
// Input
let X = 14;
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
document.write(minimumPossible(X));
 
// This code is contributed by rishavmahato348.
</script>


Output: 

5

 

Time Complexity: O(log(X))
Auxiliary Space: O(1)

Another Efficient Approach:

As we know that expression for the sum of the first n natural number is  (n*(n+1))/2.so this expression can be very useful in finding out the value of n from the given X.
From the problem statement, it is quite clear that n * (n + 1) / 2 <= X, so first solve this equation and then use the simplified version of the approach to calculate the value of n for given X.

         n * (n + 1) / 2 >=X
=>    n2 + n >= 2X
=>    n2 + n + (1/4 – 1/4) >= 2X
=>    (n + 1/2)2 – 1/4 >= 2X
=>    (n + 1/2)2  >= (2X+1/4)
=>    (n + 1/2) >= sqrt(2X + 1/4)
=>    n >= sqrt(2X + 1/4) – 1/2
The required value of n will be.
=>   n = ceil(sqrt(2X + 1/4) – 1/2)                                                                           

Below is the implementation of the above approach:

C++




// C++ program to implement the approach
#include <cmath>
#include <iostream>
 
using namespace std;
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
int minimumPossible(int X)
{
    return ceil((pow(2 * X + 1 / 4, 0.5) - 0.5));
}
 
int main()
{
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    cout << minimumPossible(X) << endl;
 
    return 0;
}
 
// This code is contributed by phasing17.


Java




// Java Program to implement
// the above approach
// importing math module
import java.util.*;
 
class GFG
{
   
  // Finds minimum value of
  // N such that sum of first
  // N natural number >= X
  static int minimumPossible(int X)
  {
    return (int)Math.ceil((int)Math.pow((2*X+1/4), 0.5)-0.5);
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    System.out.print(minimumPossible(X));
  }
}
 
// This code is contributed by phasing17


Python3




# Python3 Program to implement
# the above approach
# importing math module
import math
 
# Finds minimum value of
# N such that sum of first
# N natural number >= X
 
 
def minimumPossible(X):
    return math.ceil(((2*X+1/4)**(0.5))-1/2)
 
 
# Driver Code
if __name__ == "__main__":
    # Input
    X = 14
    # Finds minimum value of
    # N such that sum of first
    # N natural number >= X
    print(minimumPossible(X))
"""This code is contributed by rajatkumargla19 (RAJAT KUMAR)."""


C#




// C# Program to implement
// the above approach
// importing math module
using System;
 
class GFG
{
  // Finds minimum value of
  // N such that sum of first
  // N natural number >= X
  static int minimumPossible(int X)
  {
    return (int)Math.Ceiling((int)Math.Pow((2*X+1/4), 0.5)-0.5);
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    // Input
    int X = 14;
 
    // Finds minimum value of
    // N such that sum of first
    // N natural number >= X
    Console.Write(minimumPossible(X));
  }
}
 
// This code is contributed by phasing17


Javascript




// JS Program to implement
// the above approach
// importing math module
 
// Finds minimum value of
// N such that sum of first
// N natural number >= X
function minimumPossible(X)
{
    return Math.ceil(((2*X+1/4)**(0.5))-1/2)
}
 
// Driver Code
 
// Input
let X = 14
     
// Finds minimum value of
// N such that sum of first
// N natural number >= X
console.log(minimumPossible(X))
 
// This code is contributed by phasing17


       

Output: 5

 Time Complexity: O(log(X)), for calculating the square root of the given X value.
Auxiliary Space: O(1) as no extra space is required here.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Wardslaus
Dominic Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments