Given an array, arr[] of size N and an integer K, the task is to find the number of ways of selecting K array elements, such that the sum of these K elements is the maximum possible sum.
Examples:
Input: arr[] = {3, 1, 1, 2}, K = 3
Output: 2
Explanation:
The possible ways of selecting 3 elements are:
- {arr[0] (=3), arr[1] (=1), arr[2] (=1)}, the sum of the subset is equal to (3+1+1 = 5).
- {arr[0] (=3), arr[1] (=1), arr[3] (=2)}, the sum of the subset is equal to (3+1+2 = 6).
- {arr[0] (=3), arr[2] (=1), arr[3] (=2)}, the sum of the subset is equal to (3+1+2 = 6).
- {arr[1] (=1), arr[2] (=1), arr[3] (=2)}, the sum of the subset is equal to (1+1+2 = 4).
Therefore, the total number of ways of selecting the K element with the maximum sum(= 6) is equal to 2.
Input: arr[] = { 2, 3, 4, 5, 2, 2 }, K = 4
Output: 3Input: arr[]= {5, 4, 3, 3, 3, 3, 3, 1, 1}, K = 4
Output: 10
Approach: The problem can be solved by sorting the array in descending order. Follow the steps below to solve the problem:
- Sort the array in descending order.
- Calculate the number of times the Kth element, in the prefix of K-1 of the array, and then store it in a variable, say P.
- Calculate the number of times the Kth element in the array, and then store it in a variable, say Q.
- Finally, print the value of the number of ways of selecting, P element from the Q elements, i.e C(Q, P) as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the factorial of an // integer int fact( int n) { int res = 1; for ( int i = 2; i <= n; i++) res = res * i; return res; } // Function to find the value of nCr int C( int n, int r) { return fact(n) / (fact(r) * fact(n - r)); } // Function to find the number of ways // to select K elements with maximum // sum int findWays( int arr[], int N, int K) { // Sort the array in descending order sort(arr, arr + N, greater< int >()); // Stores the frequency of arr[K-1] // in the prefix of K-1 int p = 0; // Stores the frequency of arr[K-1] // in the array arr[] int q = 0; // Iterate over the range [0, K] for ( int i = 0; i < K; i++) { // If arr[i] is equal to arr[K-1] if (arr[i] == arr[K - 1]) { p++; } } // Traverse the array arr[] for ( int i = 0; i < N; i++) { // If arr[i] is equal to arr[K-1] if (arr[i] == arr[K - 1]) { q += 1; } } // Stores the number of ways of // selecting p from q elements int ans = C(q, p); // Return ans return ans; } // Driver Code int main() { // Input int arr[] = { 2, 3, 4, 5, 2, 2 }; int N = sizeof (arr) / sizeof (arr[0]); int K = 4; // Function call cout << findWays(arr, N, K); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the factorial of an // integer static int fact( int n) { int res = 1 ; for ( int i = 2 ; i <= n; i++) res = res * i; return res; } // Function to find the value of nCr static int C( int n, int r) { return fact(n) / (fact(r) * fact(n - r)); } // Function to find the number of ways // to select K elements with maximum // sum static int findWays(Integer arr[], int N, int K) { // Sort the array in descending order Arrays.sort(arr, Collections.reverseOrder()); // Stores the frequency of arr[K-1] // in the prefix of K-1 int p = 0 ; // Stores the frequency of arr[K-1] // in the array arr[] int q = 0 ; // Iterate over the range [0, K] for ( int i = 0 ; i < K; i++) { // If arr[i] is equal to arr[K-1] if (arr[i] == arr[K - 1 ]) { p++; } } // Traverse the array arr[] for ( int i = 0 ; i < N; i++) { // If arr[i] is equal to arr[K-1] if (arr[i] == arr[K - 1 ]) { q += 1 ; } } // Stores the number of ways of // selecting p from q elements int ans = C(q, p); // Return ans return ans; } // Driver Code public static void main(String[] args) { // Input Integer arr[] = { 2 , 3 , 4 , 5 , 2 , 2 }; int N = arr.length; int K = 4 ; // Function call System.out.print(findWays(arr, N, K)); } } // This code is contributed by shikhasingrajput |
Python3
# Python for the above approach # Function to find the factorial of an # integer def fact(n): res = 1 for i in range ( 2 , n + 1 ): res = res * i return res # Function to find the value of nCr def C(n, r): return fact(n) / (fact(r) * fact(n - r)) # Function to find the number of ways # to select K elements with maximum # sum def findWays(arr, N, K): # Sort the array in descending order arr.sort(reverse = True ) # Stores the frequency of arr[K-1] # in the prefix of K-1 p = 0 # Stores the frequency of arr[K-1] # in the array arr[] q = 0 # Iterate over the range [0, K] for i in range (K): # If arr[i] is equal to arr[K-1] if (arr[i] = = arr[K - 1 ]): p + = 1 # Traverse the array arr[] for i in range (N): # If arr[i] is equal to arr[K-1] if (arr[i] = = arr[K - 1 ]): q + = 1 # Stores the number of ways of # selecting p from q elements ans = C(q, p) # Return ans return int (ans) # Driver Code # Input arr = [ 2 , 3 , 4 , 5 , 2 , 2 ] N = len (arr) K = 4 # Function call print (findWays(arr, N, K)) # This code is contributed by gfgking. |
C#
// C# program for the above approach using System; class Program{ // Function to find the factorial of an // integer static int fact( int n) { int res = 1; for ( int i = 2; i <= n; i++) res = res * i; return res; } // Function to find the value of nCr static int C( int n, int r) { return fact(n) / (fact(r) * fact(n - r)); } // Function to find the number of ways // to select K elements with maximum // sum static int findWays( int []arr, int N, int K) { // Sort the array in descending order Array.Sort(arr); Array.Reverse(arr); // Stores the frequency of arr[K-1] // in the prefix of K-1 int p = 0; // Stores the frequency of arr[K-1] // in the array arr[] int q = 0; // Iterate over the range [0, K] for ( int i = 0; i < K; i++) { // If arr[i] is equal to arr[K-1] if (arr[i] == arr[K - 1]) { p++; } } // Traverse the array arr[] for ( int i = 0; i < N; i++) { // If arr[i] is equal to arr[K-1] if (arr[i] == arr[K - 1]) { q += 1; } } // Stores the number of ways of // selecting p from q elements int ans = C(q, p); // Return ans return ans; } // Driver code static void Main() { int []arr = { 2, 3, 4, 5, 2, 2 }; int N = arr.Length; int K = 4; // Function call Console.Write(findWays(arr, N, K)); } } // This code is contributed by SoumikMondal |
Javascript
<script> // JavaScript program for the above approach // Function to find the factorial of an // integer function fact(n) { let res = 1; for (let i = 2; i <= n; i++) res = res * i; return res; } // Function to find the value of nCr function C(n, r) { return fact(n) / (fact(r) * fact(n - r)); } // Function to find the number of ways // to select K elements with maximum // sum function findWays(arr, N, K) { // Sort the array in descending order arr.sort( function (a, b){ return b - a; }); // Stores the frequency of arr[K-1] // in the prefix of K-1 let p = 0; // Stores the frequency of arr[K-1] // in the array arr[] let q = 0; // Iterate over the range [0, K] for (let i = 0; i < K; i++) { // If arr[i] is equal to arr[K-1] if (arr[i] == arr[K - 1]) { p++; } } // Traverse the array arr[] for (let i = 0; i < N; i++) { // If arr[i] is equal to arr[K-1] if (arr[i] == arr[K - 1]) { q += 1; } } // Stores the number of ways of // selecting p from q elements let ans = C(q, p); // Return ans return ans; } // Driver Code // Input let arr = [ 2, 3, 4, 5, 2, 2 ]; let N = arr.length; let K = 4; // Function call document.write(findWays(arr, N, K)); // This code is contributed by Potta Lokesh </script> |
3
Time Complexity: O(N*log(N) + K)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!